基于均值不等關(guān)系優(yōu)化的自適應(yīng)圖像去霧算法
doi: 10.11999/JEIT190368
-
蘭州交通大學(xué)電子與信息工程學(xué)院 蘭州 730070
Adaptive Image Dehazing Algorithm Based on Mean Unequal Relation Optimization
-
School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
-
摘要:
針對(duì)暗通道先驗(yàn)去霧算法的不足,如天空區(qū)域透射率估計(jì)過(guò)小和在景深突變處易發(fā)生光暈效應(yīng),該文提出一種新穎且高效的去霧算法。首先通過(guò)幾何分析建立霧圖對(duì)應(yīng)無(wú)霧圖像暗通道圖的平面扇形模型,然后設(shè)定一種新型的高斯均值函數(shù),對(duì)其標(biāo)準(zhǔn)差進(jìn)行自適應(yīng)處理,用以估計(jì)扇形模型的上下邊界值,通過(guò)引入均值不等關(guān)系對(duì)兩側(cè)邊界進(jìn)行逼近,擬合出最優(yōu)無(wú)霧圖像暗通道圖,進(jìn)一步求得最佳透射率,同時(shí)也改進(jìn)局部大氣光的探索方法并復(fù)原出最終結(jié)果。實(shí)驗(yàn)表明,與其它一些經(jīng)典算法相比較,所提算法能廣泛適用于各類圖像,去霧程度徹底且效果清晰自然,具有較低的時(shí)間復(fù)雜度,有利于實(shí)時(shí)處理。
-
關(guān)鍵詞:
- 圖像復(fù)原 /
- 去霧 /
- 暗通道先驗(yàn) /
- 透射率 /
- 大氣散射模型
Abstract:In view of shortcomings of dark channel prior dehazing methods, such as transmission in sky areas is small and halo effects are prone to occur in the edges, this paper proposes a novel and efficient dehazing algorithm. Firstly, the fan-shaped model with dark channel map of haze-free image is established by geometric analysis. Then a new Gaussian mean function is set to estimate the boundary values of the model and its standard deviation is adaptive processing. Mean-value unequal relationship is also introduced to approximate the two-sided boundary, which is used to fit the most excellent dark channel map of haze-free, further obtains the best transmission. At the same time the local atmospheric light is improved to recover the final result. Experimental results show that the proposed method can be widely applied to all kinds of images compared with other classical algorithms. The degree of dehazing is thorough, final result is clear and natural. More importantly, it is favorable for real-time processing that has low time complexity.
-
Key words:
- Image restoration /
- Dehazing /
- Dark Channel Prior (DCP) /
- Transmission /
- Atmospheric scattering model
-
表 1 改進(jìn)的大氣光探索方法
輸入:有霧圖像${{I}^c}(x)$; 步驟 1 找出有霧圖像的3顏色通道的最大值${A}_{\max }^c(x) = \mathop {\max }\limits_{c \in \{\rm r,g,b\} } {{I}^c}(x)$ 步驟 2 進(jìn)行形態(tài)學(xué)閉操作,濾波核尺寸分別為${r_1} = \min [w,h]/5$, ${r_2} = \min [w,h]/20$,得到兩次閉操作結(jié)果${s_1}$和${s_2}$; 步驟 3 求取兩次閉操作的平均值,$s = ({s_1} + {s_2})/2$ ; 步驟 4 進(jìn)行交叉濾波平滑處理,得到最后的結(jié)果${{A}^c}$。 下載: 導(dǎo)出CSV
表 2 各個(gè)算法的
$e$ 和$r$ 指標(biāo)對(duì)比圖像 He[9]算法 Meng[11]算法 Ren[13]算法 Cai[12]算法 Sun[16]算法 本文算法 e r e r e r e r e r e r 1 4.50 1.28 5.82 1.79 7.55 1.47 2.76 1.08 6.44 1.22 9.01 1.41 2 8.44 1.69 5.36 2.48 20.71 1.52 17.87 1.56 15.74 1.49 18.68 1.81 3 13.89 1.70 22.56 2.59 10.82 1.97 9.11 1.47 11.22 2.01 21.83 2.01 4 10.83 1.48 24.93 3.77 27.00 3.01 9.87 1.36 12.74 1.99 22.63 2.22 5 6.87 1.28 12.12 1.69 15.61 1.76 11.10 1.28 17.25 2.06 17.18 1.64 6 26.23 1.73 31.11 1.90 31.36 2.60 18.85 1.30 22.75 1.94 30.04 2.38 7 15.51 1.85 38.03 4.12 20.35 2.55 14.53 1.63 24.74 2.98 18.47 2.95 8 3.69 1.41 3.12 1.58 8.94 1.79 2.49 1.13 6.33 1.74 8.56 1.42 均值 11.24 1.55 17.88 2.49 17.79 2.08 11.82 1.35 14.65 1.93 18.30 1.98 下載: 導(dǎo)出CSV
表 3 各個(gè)算法的
$\theta $ 和$T(s)$ 指標(biāo)對(duì)比圖像 He[9]算法 Meng[11]算法 Ren[13]算法 Cai[12]算法 Sun[16]算法 本文算法 $\theta $ T $\theta $ T $\theta $ T $\theta $ T $\theta $ T $\theta $ T 1 0.00018 2.51 0.00651 3.80 0 4.27 0.00931 3.01 0.00347 2.47 0.00001 2.65 2 0.00022 2.56 0.00355 3.16 0 3.05 0 2.87 0.00019 2.67 0.00001 2.04 3 0.00031 2.38 0.00066 3.08 0 3.78 0.00197 2.94 0.00162 2.01 0 2.06 4 0 2.61 0.00003 4.54 0 4.60 0.00126 2.98 0.00276 2.39 0 2.07 5 0.00036 2.46 0.00004 3.50 0.00013 2.67 0 4.01 0 2.00 0 2.07 6 0.00161 2.80 0 4.40 0 3.36 0.00118 3.68 0.00019 2.17 0 2.09 7 0.00009 3.02 0.00014 5.10 0 3.22 0 3.31 0 2.57 0 2.43 8 0.00294 3.94 0.00079 6.55 0.00018 3.34 0.00169 7.34 0.00024 2.77 0.00016 2.55 均值 0.00071 2.78 0.00146 4.27 0.00003 3.53 0.00192 3.77 0.00105 2.38 0.00002 2.25 下載: 導(dǎo)出CSV
-
周妍, 李慶武, 霍冠英. 基于非下采樣Contourlet變換系數(shù)直方圖匹配的自適應(yīng)圖像增強(qiáng)[J]. 光學(xué) 精密工程, 2014, 22(8): 2214–2222. doi: 10.3788/OPE.20142208.2214ZHOU Yan, LI Qingwu, and HUO Guanying. Adaptive image enhancement based on NSCT coefficient histogram matching[J]. Optics and Precision Engineering, 2014, 22(8): 2214–2222. doi: 10.3788/OPE.20142208.2214 CHEN Yang, LI Dan, and ZHANG Jianqiu. Complementary color wavelet: A novel tool for the color image/video analysis and processing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(1): 12–27. doi: 10.1109/TCSVT.2017.2776239 劉海波, 楊杰, 吳正平, 等. 基于暗通道先驗(yàn)和Retinex理論的快速單幅圖像去霧方法[J]. 自動(dòng)化學(xué)報(bào), 2015, 41(7): 1264–1273. doi: 10.16383/j.aas.2015.c140748LIU Haibo, YANG Jie, WU Zhengping, et al. A fast single image dehazing method based on dark channel prior and Retinex theory[J]. Acta Automatica Sinica, 2015, 41(7): 1264–1273. doi: 10.16383/j.aas.2015.c140748 SCHECHNER Y Y, NARASIMHAN S G, and NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003, 42(3): 511–525. doi: 10.1364/AO.42.000511 NARASIMHAN S G and NAYAR S K. Interactive (de) weathering of an image using physical models[C]. 2003 IEEE Workshop on Color and Photometric Methods in Computer Vision, Nice, France, 2003: 1–8. TAN R T. Visibility in bad weather from a single image[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8. doi: 10.1109/CVPR.2008.4587643. FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 72. doi: 10.1145/1360612.1360671 TAREL J P and HAUTIèRE N. Fast visibility restoration from a single color or gray level image[C]. The 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 2201–2208. HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168 ZHU Qingsong, MAI Jiaming, and SHAO Ling. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522–3533. doi: 10.1109/TIP.2015.2446191 MENG Gaofeng, WANG Ying, DUAN Jiangyong, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 617–624. CAI Bolun, XU Xiangmin, JIA Kui, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187–5198. doi: 10.1109/TIP.2016.2598681 REN Wenqi, LIU Si, ZHANG Hua, et al. Single image dehazing via multi-scale convolutional neural networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 154–169. 江巨浪, 孫偉, 王振東, 等. 基于透射率權(quán)值因子的霧天圖像融合增強(qiáng)算法[J]. 電子與信息學(xué)報(bào), 2018, 40(10): 2388–2394. doi: 10.11999/JEIT171032JIANG Julang, SUN Wei, WANG Zhendong, et al. Integrated enhancement algorithm for hazy image using transmittance as weighting factor[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2388–2394. doi: 10.11999/JEIT171032 HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213 SUN Wei, WANG Hao, SUN Changhao, et al. Fast single image haze removal via local atmospheric light veil estimation[J]. Computers & Electrical Engineering, 2015, 46: 371–383. doi: 10.1016/j.compeleceng.2015.02.009 MIN Xiongkuo, ZHAI Guangtao, GU Ke, et al. Objective quality evaluation of dehazed images[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2879–2892. doi: 10.1109/TITS.2018.2868771 楊愛(ài)萍, 王南, 龐彥偉, 等. 人工光源條件下夜間霧天圖像建模及去霧[J]. 電子與信息學(xué)報(bào), 2018, 40(6): 1330–1337. doi: 10.11999/JEIT170704YANG Aiping, WANG Nan, PANG Yanwei, et al. Nighttime haze removal based on new imaging model with artificial light sources[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1330–1337. doi: 10.11999/JEIT170704 -