一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于均值不等關(guān)系優(yōu)化的自適應(yīng)圖像去霧算法

楊燕 王志偉

楊燕, 王志偉. 基于均值不等關(guān)系優(yōu)化的自適應(yīng)圖像去霧算法[J]. 電子與信息學(xué)報(bào), 2020, 42(3): 755-763. doi: 10.11999/JEIT190368
引用本文: 楊燕, 王志偉. 基于均值不等關(guān)系優(yōu)化的自適應(yīng)圖像去霧算法[J]. 電子與信息學(xué)報(bào), 2020, 42(3): 755-763. doi: 10.11999/JEIT190368
Yan YANG, Zhiwei WANG. Adaptive Image Dehazing Algorithm Based on Mean Unequal Relation Optimization[J]. Journal of Electronics & Information Technology, 2020, 42(3): 755-763. doi: 10.11999/JEIT190368
Citation: Yan YANG, Zhiwei WANG. Adaptive Image Dehazing Algorithm Based on Mean Unequal Relation Optimization[J]. Journal of Electronics & Information Technology, 2020, 42(3): 755-763. doi: 10.11999/JEIT190368

基于均值不等關(guān)系優(yōu)化的自適應(yīng)圖像去霧算法

doi: 10.11999/JEIT190368
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61561030),甘肅省財(cái)政廳基本科研業(yè)務(wù)費(fèi)基金(214138),蘭州交通大學(xué)教改基金(160012)
詳細(xì)信息
    作者簡(jiǎn)介:

    楊燕:女,1972年生,博士,教授、碩士生導(dǎo)師,主要研究方向?yàn)閿?shù)字圖像處理、智能信息處理、語(yǔ)音信號(hào)處理

    王志偉:男,1996年生,碩士生,主要研究方向?yàn)閿?shù)字圖像處理、計(jì)算機(jī)視覺(jué)

    通訊作者:

    楊燕 yangyantd@mail.lzjtu.cn

  • 中圖分類號(hào): TN911.73; TP391.41

Adaptive Image Dehazing Algorithm Based on Mean Unequal Relation Optimization

Funds: The National Natural Science Foundation of China (61561030), The Fundamental Research Funds for the Gansu Provincial Finance Department (214138), The Research Fund of Teaching Reform Project of Lanzhou Jiao Tong University (160012)
  • 摘要:

    針對(duì)暗通道先驗(yàn)去霧算法的不足,如天空區(qū)域透射率估計(jì)過(guò)小和在景深突變處易發(fā)生光暈效應(yīng),該文提出一種新穎且高效的去霧算法。首先通過(guò)幾何分析建立霧圖對(duì)應(yīng)無(wú)霧圖像暗通道圖的平面扇形模型,然后設(shè)定一種新型的高斯均值函數(shù),對(duì)其標(biāo)準(zhǔn)差進(jìn)行自適應(yīng)處理,用以估計(jì)扇形模型的上下邊界值,通過(guò)引入均值不等關(guān)系對(duì)兩側(cè)邊界進(jìn)行逼近,擬合出最優(yōu)無(wú)霧圖像暗通道圖,進(jìn)一步求得最佳透射率,同時(shí)也改進(jìn)局部大氣光的探索方法并復(fù)原出最終結(jié)果。實(shí)驗(yàn)表明,與其它一些經(jīng)典算法相比較,所提算法能廣泛適用于各類圖像,去霧程度徹底且效果清晰自然,具有較低的時(shí)間復(fù)雜度,有利于實(shí)時(shí)處理。

  • 圖  1  3個(gè)向量的幾何表示

    圖  2  各個(gè)向量間的匹配關(guān)系

    圖  3  高斯均值函數(shù)

    圖  4  透射率及效果對(duì)比圖

    圖  5  大氣光值及效果對(duì)比圖

    圖  6  去霧示意圖

    圖  7  本文算法原理框圖

    圖  8  近景組圖像(圖像1-圖像3)

    圖  9  遠(yuǎn)近景交替組圖像(圖像4-圖像6)

    圖  10  遠(yuǎn)景組圖像(圖像7-圖像8)

    表  1  改進(jìn)的大氣光探索方法

     輸入:有霧圖像${{I}^c}(x)$;
     步驟 1 找出有霧圖像的3顏色通道的最大值${A}_{\max }^c(x) = \mathop {\max }\limits_{c \in \{\rm r,g,b\} } {{I}^c}(x)$
     步驟 2 進(jìn)行形態(tài)學(xué)閉操作,濾波核尺寸分別為${r_1} = \min [w,h]/5$, ${r_2} = \min [w,h]/20$,得到兩次閉操作結(jié)果${s_1}$和${s_2}$;
     步驟 3 求取兩次閉操作的平均值,$s = ({s_1} + {s_2})/2$ ;
     步驟 4 進(jìn)行交叉濾波平滑處理,得到最后的結(jié)果${{A}^c}$。
    下載: 導(dǎo)出CSV

    表  2  各個(gè)算法的$e$$r$指標(biāo)對(duì)比

    圖像He[9]算法Meng[11]算法Ren[13]算法Cai[12]算法Sun[16]算法本文算法
    erererererer
    14.501.285.821.797.551.472.761.086.441.229.011.41
    28.441.695.362.4820.711.5217.871.5615.741.4918.681.81
    313.891.7022.562.5910.821.979.111.4711.222.0121.832.01
    410.831.4824.933.7727.003.019.871.3612.741.9922.632.22
    56.871.2812.121.6915.611.7611.101.2817.252.0617.181.64
    626.231.7331.111.9031.362.6018.851.3022.751.9430.042.38
    715.511.8538.034.1220.352.5514.531.6324.742.9818.472.95
    83.691.413.121.588.941.792.491.136.331.748.561.42
    均值11.241.5517.882.4917.792.0811.821.3514.651.9318.301.98
    下載: 導(dǎo)出CSV

    表  3  各個(gè)算法的$\theta $$T(s)$指標(biāo)對(duì)比

    圖像He[9]算法Meng[11]算法Ren[13]算法Cai[12]算法Sun[16]算法本文算法
    $\theta $T$\theta $T$\theta $T$\theta $T$\theta $T$\theta $T
    10.000182.510.006513.8004.270.009313.010.003472.470.000012.65
    20.000222.560.003553.1603.0502.870.000192.670.000012.04
    30.000312.380.000663.0803.780.001972.940.001622.0102.06
    402.610.000034.5404.600.001262.980.002762.3902.07
    50.000362.460.000043.500.000132.6704.0102.0002.07
    60.001612.8004.4003.360.001183.680.000192.1702.09
    70.000093.020.000145.1003.2203.3102.5702.43
    80.002943.940.000796.550.000183.340.001697.340.000242.770.000162.55
    均值0.000712.780.001464.270.000033.530.001923.770.001052.380.000022.25
    下載: 導(dǎo)出CSV
  • 周妍, 李慶武, 霍冠英. 基于非下采樣Contourlet變換系數(shù)直方圖匹配的自適應(yīng)圖像增強(qiáng)[J]. 光學(xué) 精密工程, 2014, 22(8): 2214–2222. doi: 10.3788/OPE.20142208.2214

    ZHOU Yan, LI Qingwu, and HUO Guanying. Adaptive image enhancement based on NSCT coefficient histogram matching[J]. Optics and Precision Engineering, 2014, 22(8): 2214–2222. doi: 10.3788/OPE.20142208.2214
    CHEN Yang, LI Dan, and ZHANG Jianqiu. Complementary color wavelet: A novel tool for the color image/video analysis and processing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(1): 12–27. doi: 10.1109/TCSVT.2017.2776239
    劉海波, 楊杰, 吳正平, 等. 基于暗通道先驗(yàn)和Retinex理論的快速單幅圖像去霧方法[J]. 自動(dòng)化學(xué)報(bào), 2015, 41(7): 1264–1273. doi: 10.16383/j.aas.2015.c140748

    LIU Haibo, YANG Jie, WU Zhengping, et al. A fast single image dehazing method based on dark channel prior and Retinex theory[J]. Acta Automatica Sinica, 2015, 41(7): 1264–1273. doi: 10.16383/j.aas.2015.c140748
    SCHECHNER Y Y, NARASIMHAN S G, and NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003, 42(3): 511–525. doi: 10.1364/AO.42.000511
    NARASIMHAN S G and NAYAR S K. Interactive (de) weathering of an image using physical models[C]. 2003 IEEE Workshop on Color and Photometric Methods in Computer Vision, Nice, France, 2003: 1–8.
    TAN R T. Visibility in bad weather from a single image[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8. doi: 10.1109/CVPR.2008.4587643.
    FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 72. doi: 10.1145/1360612.1360671
    TAREL J P and HAUTIèRE N. Fast visibility restoration from a single color or gray level image[C]. The 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 2201–2208.
    HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168
    ZHU Qingsong, MAI Jiaming, and SHAO Ling. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522–3533. doi: 10.1109/TIP.2015.2446191
    MENG Gaofeng, WANG Ying, DUAN Jiangyong, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 617–624.
    CAI Bolun, XU Xiangmin, JIA Kui, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187–5198. doi: 10.1109/TIP.2016.2598681
    REN Wenqi, LIU Si, ZHANG Hua, et al. Single image dehazing via multi-scale convolutional neural networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 154–169.
    江巨浪, 孫偉, 王振東, 等. 基于透射率權(quán)值因子的霧天圖像融合增強(qiáng)算法[J]. 電子與信息學(xué)報(bào), 2018, 40(10): 2388–2394. doi: 10.11999/JEIT171032

    JIANG Julang, SUN Wei, WANG Zhendong, et al. Integrated enhancement algorithm for hazy image using transmittance as weighting factor[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2388–2394. doi: 10.11999/JEIT171032
    HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213
    SUN Wei, WANG Hao, SUN Changhao, et al. Fast single image haze removal via local atmospheric light veil estimation[J]. Computers & Electrical Engineering, 2015, 46: 371–383. doi: 10.1016/j.compeleceng.2015.02.009
    MIN Xiongkuo, ZHAI Guangtao, GU Ke, et al. Objective quality evaluation of dehazed images[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2879–2892. doi: 10.1109/TITS.2018.2868771
    楊愛(ài)萍, 王南, 龐彥偉, 等. 人工光源條件下夜間霧天圖像建模及去霧[J]. 電子與信息學(xué)報(bào), 2018, 40(6): 1330–1337. doi: 10.11999/JEIT170704

    YANG Aiping, WANG Nan, PANG Yanwei, et al. Nighttime haze removal based on new imaging model with artificial light sources[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1330–1337. doi: 10.11999/JEIT170704
  • 加載中
圖(10) / 表(3)
計(jì)量
  • 文章訪問(wèn)數(shù):  2326
  • HTML全文瀏覽量:  865
  • PDF下載量:  115
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-05-22
  • 修回日期:  2019-10-29
  • 網(wǎng)絡(luò)出版日期:  2019-11-12
  • 刊出日期:  2020-03-19

目錄

    /

    返回文章
    返回