一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于矢量圖的特定輻射源識別方法

潘一葦 楊司韓 彭華 李天昀 王文雅

潘一葦, 楊司韓, 彭華, 李天昀, 王文雅. 基于矢量圖的特定輻射源識別方法[J]. 電子與信息學(xué)報, 2020, 42(4): 941-949. doi: 10.11999/JEIT190329
引用本文: 潘一葦, 楊司韓, 彭華, 李天昀, 王文雅. 基于矢量圖的特定輻射源識別方法[J]. 電子與信息學(xué)報, 2020, 42(4): 941-949. doi: 10.11999/JEIT190329
Yiwei PAN, Sihan YANG, Hua PENG, Tianyun LI, Wenya WANG. Specific Emitter Identification Using Signal Trajectory Image[J]. Journal of Electronics & Information Technology, 2020, 42(4): 941-949. doi: 10.11999/JEIT190329
Citation: Yiwei PAN, Sihan YANG, Hua PENG, Tianyun LI, Wenya WANG. Specific Emitter Identification Using Signal Trajectory Image[J]. Journal of Electronics & Information Technology, 2020, 42(4): 941-949. doi: 10.11999/JEIT190329

基于矢量圖的特定輻射源識別方法

doi: 10.11999/JEIT190329
基金項目: 國家自然科學(xué)基金 (61401511, U1736107)
詳細信息
    作者簡介:

    潘一葦:男,1990年生,博士生,研究方向為通信信號處理、特定輻射源識別

    楊司韓:男,1990年生,碩士生,研究方向為通信信號處理、深度學(xué)習(xí)

    彭華:男,1973年生,教授,研究方向為通信信號處理、軟件無線電

    李天昀:男,1979年生,副教授,研究方向為通信信號處理、軟件無線電

    王文雅:女,1991年生,碩士生,研究方向為通信信號處理、可見光通信

    通訊作者:

    潘一葦 novakd@163.com

  • 中圖分類號: TN911.7

Specific Emitter Identification Using Signal Trajectory Image

Funds: The National Natural Science Foundation of China (61401511, U1736107)
  • 摘要:

    發(fā)射機的指紋特征具有復(fù)雜性,現(xiàn)有的認識水平制約了特定輻射源識別(SEI)的性能。為此,該文提出一種基于矢量圖的SEI方法,應(yīng)用深度學(xué)習(xí)技術(shù)實現(xiàn)了多種復(fù)雜特征的聯(lián)合提取。該文首先分析了多種發(fā)射機畸變在矢量圖上的視覺表現(xiàn);在此基礎(chǔ)上,以矢量圖灰度圖像作為信號表示,構(gòu)建深度殘差網(wǎng)絡(luò)提取圖像中的視覺特征。該方法克服了現(xiàn)有認知的局限,兼具高信息完整性和低計算復(fù)雜度。實驗結(jié)果表明,與現(xiàn)有算法相比,該方法能夠顯著改善SEI的性能,識別增益約為30%。

  • 圖  1  I/Q正交調(diào)制發(fā)射機

    圖  2  I/Q調(diào)制器畸變的視覺表現(xiàn)

    圖  3  濾波器畸變的視覺表現(xiàn)

    圖  4  振蕩器畸變的視覺表現(xiàn)

    圖  5  功率放大畸變的視覺表現(xiàn)

    圖  6  矢量圖灰度圖像

    圖  7  深度殘差網(wǎng)絡(luò)的網(wǎng)絡(luò)結(jié)構(gòu)

    圖  8  殘差單元個數(shù)對識別性能的影響

    圖  9  符號個數(shù)對識別性能的影響

    圖  10  過采倍數(shù)對識別性能的影響

    圖  11  不同算法的識別性能

    表  1  不同算法的復(fù)雜度對比

    算法文獻[6]算法文獻[8]算法文獻[9]算法文獻[10]算法文獻[14]算法本文算法
    復(fù)雜度$O\left( {ML\lg \left( {ML} \right)} \right) + O\left( S \right)$$O\left( {ML} \right) + O\left( L \right)$$O\left( {ML} \right) + O\left( L \right)$$O\left( {ML} \right) + O\left( L \right)$$O\left( {PQ\lg Q} \right) + O\left( S \right)$$O\left( {ML} \right) + O\left( S \right)$
    下載: 導(dǎo)出CSV

    表  2  不同輻射源的畸變參數(shù)

    輻射源1234567
    $g$0.02990.01880.0081–0.0025–0.0128–0.0230–0.0329
    $\phi $0.01370.00930.00500.0006–0.0038–0.0081–0.0125
    ${c_{\rm I}}$0.01420.00970.00520.0007–0.0038–0.0083–0.0128
    ${c_{\rm Q}}$0.01470.01020.00570.0012–0.0033–0.0078–0.0123
    ${a_n}$–0.0640–0.0429–0.0218–0.00070.02040.04150.0627
    ${b_n}$–0.0740–0.0498–0.0256–0.00140.02280.04700.0713
    ${c_{\rm o}}$0.00020.00100.00180.00260.00340.00420.0050
    ${\lambda _3}$–0.2915–0.0079i–0.0003–0.0004i–0.4371–0.0092i–0.1459–0.0066i–0.5827–0.0096i–0.0731–0.0042i–0.3643–0.0085i
    ${\lambda _5}$0.0295+0.0005i0.0001+0.0004i0.0821+0.0048i0.0338+0.0014i0.0537+0.0029i0.0571+0.0035i0.0484+0.0022i
    下載: 導(dǎo)出CSV

    表  3  網(wǎng)絡(luò)結(jié)構(gòu)及其參數(shù)量和單批次訓(xùn)練時間

    RN246810
    conv17×7, 32, stride2
    max pool3×3, stride 2
    conv2_x$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$
    conv3_x$\left[ \begin{array}{l} 3 \times 3,64 \\ 3 \times 3,64 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,64 \\ 3 \times 3,64 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,64 \\ 3 \times 3,64 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,64 \\ 3 \times 3,64 \\ \end{array} \right] \times 2$
    conv4_x$\left[ \begin{array}{l} 3 \times 3,128 \\ 3 \times 3,128 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,128 \\ 3 \times 3,128 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,128 \\ 3 \times 3,128 \\ \end{array} \right] \times 2$
    conv5_x$\left[ \begin{array}{l} 3 \times 3,256 \\ 3 \times 3,256 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,256 \\ 3 \times 3,256 \\ \end{array} \right] \times 2$
    conv6_x$\left[ \begin{array}{l} 3 \times 3,512 \\ 3 \times 3,512 \\ \end{array} \right] \times 2$
    avg pool5-d fc, softmax
    參數(shù)量3.9×1041.7×1056.8×1052.7×1061.1×107
    訓(xùn)練時間 (s)0.35160.38580.40190.42620.4584
    下載: 導(dǎo)出CSV
  • DANEV B, ZANETTI D, and CAPKUN S. On physical-layer identification of wireless devices[J]. ACM Computing Surveys, 2012, 45(1): 1–29. doi: 10.1145/2379776.2379782
    SPEZIO A E. Electronic warfare systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 633–644. doi: 10.1109/22.989948
    MERCHANT K, REVAY S, STANTCHEV G, et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 160–167. doi: 10.1109/JSTSP.2018.2796446
    HAN Jie, ZHANG Tao, REN Dongfang, et al. Communication emitter identification based on distribution of bispectrum amplitude and phase[J]. IET Science, Measurement & Technology, 2017, 11(8): 1104–1112. doi: 10.1049/iet-smt.2017.0024
    BERTONCINI C, RUDD K, NOUSAIN B, et al. Wavelet fingerprinting of radio-frequency identification (RFID) tags[J]. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4843–4850. doi: 10.1109/TIE.2011.2179276
    ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205. doi: 10.1109/TIFS.2016.2520908
    SATIJA U, TRIVEDI N, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 581–591. doi: 10.1109/TIFS.2018.2855665
    BRIK V, BANERJEE S, GRUTESER M, et al. Wireless device identification with radiometric signatures[C]. The 14th ACM International Conference on Mobile Computing and Networking, San Francisco, USA, 2008: 116–127.
    HUANG Yuanling and ZHENG Hui. Radio frequency fingerprinting based on the constellation errors[C]. The 18th Asia-Pacific Conference on Communications, Jeju Island, South Korea, 2012: 900–905.
    彭林寧, 胡愛群, 朱長明, 等. 基于星座軌跡圖的射頻指紋提取方法[J]. 信息安全學(xué)報, 2016, 1(1): 50–58. doi: 10.19363/j.cnki.cn10-1380/tn.2016.01.007

    PENG Linning, HU Aiqun, ZHU Changming, et al. Radio fingerprint extraction based on constellation trace figure[J]. Journal of Cyber Security, 2016, 1(1): 50–58. doi: 10.19363/j.cnki.cn10-1380/tn.2016.01.007
    O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022
    KULIN M, KAZAZ T, MOERMAN I, et al. End-to-end learning from spectrum data: A deep learning approach for wireless signal identification in spectrum monitoring applications[J]. IEEE Access, 2018, 6: 18484–18501. doi: 10.1109/ACCESS.2018.2818794
    RIYAZ S, SANKHE K, IOANNIDIS S, et al. Deep learning convolutional neural networks for radio identification[J]. IEEE Communications Magazine, 2018, 56(9): 146–152. doi: 10.1109/MCOM.2018.1800153
    DING Lida, WANG Shilian, WANG Fanggang, et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(12): 2591–2594. doi: 10.1109/LCOMM.2018.2871465
    Agilent Technologies. Agilent technologies wireless test solutions application note 1313: Testing and troubleshooting digital RF communications transmitter designs[EB/OL]. http://literature.cdn.keysight.com/litweb/pdf/5968-3578E.pdf, 2016.
    SRIDHARAN G. Phase noise in multi-carrier systems[D]. [Master dissertation], University of Toronto, 2010: 9–44.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
  • 加載中
圖(11) / 表(3)
計量
  • 文章訪問數(shù):  3918
  • HTML全文瀏覽量:  1352
  • PDF下載量:  185
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-05-07
  • 修回日期:  2019-07-23
  • 網(wǎng)絡(luò)出版日期:  2019-09-29
  • 刊出日期:  2020-06-04

目錄

    /

    返回文章
    返回