基于并行全相位點通濾波的高性能互素譜分析方法
doi: 10.11999/JEIT190317
-
1.
天津大學(xué)電氣自動化與信息工程學(xué)院 天津 300072
-
2.
天津大學(xué)青島海洋技術(shù)研究院 青島 266200
-
3.
天津大學(xué)微電子學(xué)院 天津 300072
High-performance Co-prime Spectral Analysis Method Based on Parallelled All-phase Point-pass Filtering
-
1.
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
-
2.
Qingdao Institute of Ocean Technology, Tianjin University, Qingdao 266200, China
-
3.
School of Microelectronics, Tianjin University, Tianjin 300072, China
-
摘要:
為根本消除欠采樣寬頻譜分析中的偽峰副效應(yīng),該文提出基于并行全相位點通濾波的高性能互素譜分析方法。通過剖析經(jīng)典互素譜分析的機理,指出產(chǎn)生偽峰效應(yīng)的根源在于上、下通道的多相濾波支路之間存在多余的重疊邊界頻帶。故借助全相位點通濾波器組來取代經(jīng)典互素譜的原型濾波器,并且推導(dǎo)出基于并行點通濾波的互素譜分析流程。理論分析和仿真實驗均表明,新的方法顯著改善譜分析性能:不僅從根本上消除了偽峰產(chǎn)生的可能,而且相比于經(jīng)典互素譜分析還大大提升了譜分辨率,從而具有較高的密集譜成分辨識性能。在軟件無線電、雷達(dá)探測、無源定位、海事無線電等領(lǐng)域有廣泛應(yīng)用前景。
Abstract:In order to completely remove the spurious-peak side effect in the undersampling based wide-band spectral analysis, this paper proposes a high-performance co-prime spectral analysis method based on paralleled all-phase point-pass filtering. On basis of a deep analysis on the mechanism of the classical co-prime spectral analysis, it is discovered that this spurious-peak side effect arises from those redudant overlapping boundary-bands related to distinct polyphase filtering branches between the up data path and the down data path. Therefore, through replacing the prototype filters in the classical co-prime spectral analysis by the all-phase point-pass filtering banks, a novel co-prime analysis dataflow is derived based on paralleled all-phase point-pass filtering. Both theoretic analysis and numerical simulation show that the proposed spectral analysis method achieves remarkable performance improvement: it can not only completely remove the spurious-peak side effect, but also obtain a much higher spectral resolution than the classical co-prime analysis, thereby possessing another merit of distinguishing dense spectral components. The proposed spectral analysis method possesses vast potentials in the software-defined radio, radar detection, passive positioning and marine wireless communication etc.
-
鄭仕鏈, 楊小牛. 用于調(diào)制寬帶轉(zhuǎn)換器壓縮頻譜感知的重構(gòu)失敗判定方法[J]. 電子與信息學(xué)報, 2015, 37(1): 236–240. doi: 10.11999/JEIT140127ZHENG Shilian and YANG Xiaoniu. A reconstruction failure detection scheme for modulated wideband converter based compressed spectrum sensing[J]. Journal of Electronics &Information Technology, 2015, 37(1): 236–240. doi: 10.11999/JEIT140127 DI MARTINO G and IODICE A. Passive beamforming with coprime arrays[J]. IET Radar, Sonar & Navigation, 2017, 11(6): 964–971. doi: 10.1049/iet-rsn.2016.0517 單宇軒, 王健, 黃翔東. 基于互素譜分析的海洋無線電信道感知[C]. 第十二屆全國信號和智能信息處理與應(yīng)用學(xué)術(shù)會議論文集, 杭州, 2018: 244–248.SHAN Yuxuan, WANG Jian, and HUANG Xiangdong. Maritime wireless channel recognition based on Co-prime spectrum analysis[C]. The 12th China Signal and Intelligent Information Processing and Application Workshop, Hangzhou, China, 2018: 244–248. SUN Hongjian, NALLANATHAN A, WANG Chengxiang, et al. Wideband spectrum sensing for cognitive radio networks: A survey[J]. IEEE Wireless Communications, 2013, 20(2): 74–81. doi: 10.1109/MWC.2013.6507397 TROPP J A, LASKA J N, DUARTE M F, et al. Beyond Nyquist: Efficient sampling of sparse bandlimited signals[J]. IEEE Transactions on Information Theory, 2010, 56(1): 520–544. doi: 10.1109/TIT.2009.2034811 MISHALI M and ELDAR Y C. From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 375–391. doi: 10.1109/jstsp.2010.2042414 VAIDYANATHAN P P and PAL P. Sparse sensing with Co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682 VAIDYANATHAN P P and PAL P. Theory of sparse coprime sensing in multiple dimensions[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3592–3608. doi: 10.1109/tsp.2011.2135348 VAIDYANATHAN P P and PAL P. Sparse coprime sensing with multidimensional lattice arrays[C]. 2011 Digital Signal Processing and Signal Processing Education Meeting, Sedona, USA, 2011: 425–430. QIN Si, ZHANG Y D, AMIN M G, et al. Generalized coprime sampling of Toeplitz matrices for spectrum estimation[J]. IEEE Transactions on Signal Processing, 2017, 65(1): 81–94. doi: 10.1109/TSP.2016.2614799 HUANG Xiangdong, HAN Yiwen, YAN Ziyang, et al. Resolution doubled Co-prime spectral analyzers for removing spurious peaks[J]. IEEE Transactions on Signal Processing, 2016, 64(10): 2489–2498. doi: 10.1109/TSP.2016.2526964 黃翔東, 韓溢文, 閆子陽, 等. 基于全相位濾波的互素譜分析的高效設(shè)計[J]. 系統(tǒng)工程與電子技術(shù), 2017, 39(1): 27–33.HUANG Xiangdong, HAN Yiwen, YAN Ziyang, et al. Efficient design of co-prime spectral analysis based on all-phase filtering[J]. Systems Engineering and Electronics, 2017, 39(1): 27–33. 黃翔東, 王兆華. 基于兩種對稱頻率采樣的全相位FIR濾波器設(shè)計[J]. 電子與信息學(xué)報, 2007, 29(2): 478–481.HUANG Xiangdong and WANG Zhaohua. All-phase FIR filter design based on two kinds of symmetric frequency sampling[J]. Journal of Electronics &Information Technology, 2007, 29(2): 478–481. 閆格, 黃翔東, 劉開華. 基于全相位窄帶濾波的超分辨率時延估計[J]. 天津大學(xué)學(xué)報: 自然科學(xué)與工程技術(shù)版, 2014, 47(3): 249–254. doi: 10.11784/tdxbz201206042YAN Ge, HUANG Xiangdong, and LIU Kaihua. Super-resolution time delay estimation based on all-phase narrow-band filtering[J]. Journal of Tianjin University:Science and Technology, 2014, 47(3): 249–254. doi: 10.11784/tdxbz201206042 黃翔東, 王越冬, 靳旭康, 等. 無窗全相位FFT/FFT相位差頻移補償頻率估計器[J]. 電子與信息學(xué)報, 2016, 38(5): 1135–1142. doi: 10.11999/JEIT151041HUANG Xiangdong, WANG Yuedong, JIN Xukang, et al. No-windowed apFFT/FFT phase difference frequency estimator based on frequency-shift & compensation[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1135–1142. doi: 10.11999/JEIT151041 黃翔東, 徐婧文, 張博, 等. 低復(fù)雜度的可變分?jǐn)?shù)時延濾波器設(shè)計[J]. 電子與信息學(xué)報, 2018, 40(4): 985–991. doi: 10.11999/JEIT170349HUANG Xiangdong, XU Jingwen, ZHANG Bo, et al. Low-complexity design of variable fractional delay filters[J]. Journal of Electronics &Information Technology, 2018, 40(4): 985–991. doi: 10.11999/JEIT170349 -