小蜂窩網(wǎng)絡中不活躍用戶的最優(yōu)能量效率資源分配方案
doi: 10.11999/JEIT190303
-
重慶郵電大學通信與信息工程學院 重慶 400065
Energy Efficient Resource Allocation Scheme Based on Inactive Users in Small Cell Networks
-
College of Communication and Information Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
摘要:
針對5G網(wǎng)絡中因小區(qū)重疊覆蓋區(qū)域的干擾問題,為緩解密集小蜂窩網(wǎng)絡中移動用戶的業(yè)務連續(xù)性,提高頻譜資源利用率,進而最大化整個網(wǎng)絡平均能量效率問題。該文提出一種基于不活躍用戶的最優(yōu)能量效率資源分配方案(EEI)。首先,該方案依據(jù)不活躍用戶通知區(qū)域,建立以用戶為中心的虛擬小區(qū),小區(qū)內(nèi)小蜂窩基站可協(xié)作為用戶提供通信服務,提高用戶通信質(zhì)量,緩解小蜂窩同層干擾,減少切換信令開銷。其次,基于Lyapunov優(yōu)化理論,該方案將整體網(wǎng)絡平均能量效率優(yōu)化問題,轉(zhuǎn)換為用戶最優(yōu)傳輸資源分配和最優(yōu)功率分配兩個子問題,在最大化系統(tǒng)平均能量效率同時保證系統(tǒng)隊列穩(wěn)定性。由于該文將原優(yōu)化問題進行了松弛,所得結(jié)果是局部最優(yōu)解,而不是全局最優(yōu)解。仿真結(jié)果表明,該文提出的基于不活躍用戶的最優(yōu)能量效率資源分配算法,其系統(tǒng)能量效率優(yōu)于對比算法而計算復雜度較高。
-
關(guān)鍵詞:
- 無線通信 /
- 能量效率 /
- 用戶移動性 /
- 小區(qū)虛擬化技術(shù) /
- Lyapunov優(yōu)化 /
- 不活躍用戶
Abstract:Considering the interference problem of overlapping areas of cells, the service continuity of mobile users and the utilization of spectrum resources in the 5G network, an Energy Efficient resource allocation scheme for the Inactive user(EEI) is proposed. Firstly, a user-centered virtual cell is generated based on the notification area of the inactive users, and the intra-cell next-generation NodeBs (gNBs) could cooperatively provide communication services for users to improve the communication quality, lower the inter-cell interference, and reduce the handover signaling overhead. Secondly, Lyapunov optimization method is used to maximize the energy efficiency of the network, while ensuring the stability of the data queue. To make the optimization problem tractable, the scheme is decomposed into two sub-problems: the optimal transmission resource allocation and optimal transmission power allocation. Notice that, the optimal solutions are local optimal, which are based on the relaxed optimization problem. The simulation results show that the proposed energy efficiency resource allocation scheme based on the inactive users could achieve a better performance than the comparison algorithms,in the price of higher computational complexity.
-
算法1:最優(yōu)傳輸資源分配算法(OTRA) 1. 初始化${G_k}$, ${R_m}$,令$k = \left\{ {1,2,···,K} \right\}$, $N = \left\{ {1,2,···,N} \right\}$, $s = \left\{ {1,2,···,M} \right\}$, $i = K$。 2. 每個用戶分配一個RB,為用戶構(gòu)造一個3維信道增益矩陣${{H}}'\left( {K,N,M} \right)$ (1).遍歷信道增益矩陣${{H}}$,找到最大值${h_{k,n,m}}$, ${G_k} = {G_k} + \left\{ m \right\}$, ${R_m} = {R_m} + \left\{ n \right\}$,更新$k = k - \left\{ k \right\}$, $N = N - \left\{ n \right\}$; (2).刪除${{H}}\left( {k,N,M} \right)$, ${{H}}\left( {:,n,:} \right)$,更新$i = i - 1$,返回(1); (3).直到${\left| N \right|_{\rm re}} = N - K$, ${\left| S \right|_{\rm re}} = M - x\,$ $(1 \le x \le M)$, $i = 0$。 3. 分配RB給剩余的gNB,基于步驟1,構(gòu)造一個新的3維信道增益矩陣${{H}}'\left( {K,N - K,M - x} \right)$ (1).遍歷矩陣${{H}}'$,找到最大值$h{'_{k',n',m'}}$, ${G_{k'}} = {G_{k'}} + \left\{ {m'} \right\}$, ${R_{m'}} = {R_{m'}} + \left\{ {n'} \right\}$,更新${N_{\rm re}} = {N_{re}} - \left\{ {n'} \right\}$, ${S_{\rm re}} = {S_{\rm re}} - \left\{ {m'} \right\}$; (2).刪除${{H}}'\left( {:,n',:} \right)$, ${{H}}'\left( {:,:,m'} \right)$,更新${\left| S \right|_{\rm re}} = M - x - 1$,返回(1); (3). 直到${\left| N \right|_{\rm re}} = N - K - M + x$, ${\left| S \right|_{\rm re}} = 0$。 4. 分配剩余的RB給用戶,構(gòu)造3維信道增益矩陣${H''}\left( {K,N - K - M + x,M} \right)$ (1).遍歷矩陣${H''}$,找到最大值${h''_{k'',n'',m''}}$, ${R_{m''}} = {R_{m''}} + \left\{ {n''} \right\}$,更新${N_{{\rm{re}}}} = {N_{{\rm{re}}}} - \left\{ {n''} \right\}$; (2).刪除${H''}\left( {:,n''',:} \right)$,更新${\left| N \right|_{{\rm{re}}}} = N - K - M + x - 1$; (3).直到${\left| N \right|_{{\rm{re}}}} = 0$。 5. 算法結(jié)束 下載: 導出CSV
-
ALLAL I, MONGAZON-CAZAVET B, AL AGHA K, et al. A green small cells deployment in 5G — switch ON/OFF via IoT networks & energy efficient mesh backhauling[C]. 2017 IFIP Networking Conference (IFIP Networking) and Workshops, Stockholm, Sweden, 2017: 1–2. LAGEN S, AGUSTIN A, VIDAL J, et al. Distributed user-centric clustering and precoding design for CoMP joint transmission[C]. 2015 IEEE Global Communications Conference, San Diego, USA, 2015: 1–7. doi: 10.1109/GLOCOM.2015.7417090. ZARIFI K, BALIGH H, MA Jianglei, et al. Radio access virtualization: Cell follows user[C]. The 25th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communication, Washington, USA, 2014: 1381–1385. doi: 10.1109/PIMRC.2014.7136384. HUAWEI and HISILICON. Tdoc R2–1712576 RAN-based notification area configuration[S]. Reno, Nevada, USA: 3GPP, 2017. MENG Na, ZHANG Hongtao, and LU Haitao. Virtual cell-based mobility enhancement and performance evaluation in ultra-dense networks[C]. 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1–6. doi: 10.1109/WCNC.2016.7564915. DA SILVA I L, MILDH G, S?ILY M, et al. A novel state model for 5G Radio Access Networks[C]. 2016 IEEE International Conference on Communications Workshops, Kuala Lumpur, Malaysia, 2016: 632–637. doi: 10.1109/ICCW.2016.7503858. CATT. Tdoc R2–1710287 RAN-based notification area configuration[S]. Prague, Czech Republic: 3GPP, 2017. BAGAA M, TALEB T, and KSENTINI A. Efficient tracking area management in carrier cloud[C]. Procee2015 IEEE Global Communications Conference, San Diego, USA, 2015: 1–6. doi: 10.1109/GLOCOM.2015.7417110. BAGAA M, TALEB T, and KSENTINI A. Efficient tracking area management framework for 5G networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 4117–4131. doi: 10.1109/TWC.2016.2535217 RAO J B and FAPOJUWO A O. An analytical framework for evaluating spectrum/energy efficiency of heterogeneous cellular networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3568–3584. doi: 10.1109/TVT.2015.2448593 WANG Feng, CHEN Wen, TANG Hongying, et al. Joint optimization of user association, subchannel allocation, and power allocation in multi-cell multi-association OFDMA heterogeneous networks[J]. IEEE Transactions on Communications, 2017, 65(6): 2672–2684. doi: 10.1109/TCOMM.2017.2678986 LI Yuzhou, SHI Yan, SHENG Min, et al. Energy-efficient transmission in heterogeneous wireless networks: A delay-aware approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7488–7500. doi: 10.1109/TVT.2015.2472578 BOYD S, VANDENBERGHE L, and FAYBUSOVICH L. Convex optimization[J]. IEEE Transactions on Automatic Control, 2006, 51(11): 1859. doi: 10.1109/TAC.2006.884922 PALOMAR D P and CHIANG M. A tutorial on decomposition methods for network utility maximization[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1439–1451. doi: 10.1109/JSAC.2006.879350 LI Yuzhou, SHENG Min, ZHANG Yan, et al. Energy-efficient antenna selection and power allocation in downlink distributed antenna systems: A stochastic optimization approach[C]. 2014 IEEE International Conference on Communications, Sydney, Australia, 2014: 4963–4968. doi: 10.1109/ICC.2014.6884107. HE Chunlong, LI G Y, ZHENG Fuchun, et al. Energy-efficient resource allocation in OFDM systems with distributed antennas[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1223–1231. doi: 10.1109/TVT.2013.2282373 XU Guozhen, LIU An, JIANG Wei, et al. Joint user scheduling and antenna selection in distributed massive MIMO systems with limited backhaul capacity[J]. China Communications, 2014, 11(5): 17–30. doi: 10.1109/CC.2014.6880457 -