高效寬帶包絡(luò)跟蹤系統(tǒng)電路性能優(yōu)化及非線性行為校正
doi: 10.11999/JEIT190275
-
中國工程物理研究院電子工程研究所 綿陽 621900
Circuits Optimization and System Linearization for High Efficiency and Wideband Envelope Tracking Architecture
-
Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China
-
摘要:
為改善包絡(luò)跟蹤(ET)發(fā)射機(jī)帶寬、效率、線性度等指標(biāo),需優(yōu)化其關(guān)鍵電路性能并校正系統(tǒng)非線性行為。針對該問題,該文構(gòu)建電源調(diào)制器等效模型,推導(dǎo)其效率極值并闡述效率優(yōu)化方法;引入頻率補(bǔ)償網(wǎng)絡(luò)來提升電路帶寬及線性性能;基于系統(tǒng)非線性行為特征,提出包絡(luò)增強(qiáng)型數(shù)字預(yù)失真模型及線性化方案;設(shè)計實際電路并搭建包絡(luò)跟蹤系統(tǒng)。對于S頻段5/10/20 MHz帶寬6.7 dB峰均比測試信號,該系統(tǒng)功放平均效率分別為61%, 54%, 44%,且矢量幅度誤差(EVM)均優(yōu)于1%,具有較好的帶寬、效率、線性度等性能,驗證了電路優(yōu)化方法及非線性行為校正方案的可行性。
-
關(guān)鍵詞:
- 包絡(luò)調(diào)制器 /
- 包絡(luò)跟蹤 /
- 數(shù)字預(yù)失真 /
- 高效率
Abstract:To improve bandwidth, efficiency and linearity of Envelope Tracking (ET) architecture, it is necessary to optimize the performance of envelope supply modulator and linearize nonlinear behavior of the ET system. The optimization procedure of the supply modulator is proposed based on the equivalent circuit model. The frequency compensation network is used to improve the bandwidth and linearity of the modulator circuit. An envelope enhanced memory polynomial digital pre-distortion model is introduced to address the nonlinear distortion of the ET system. The practical circuit mentioned above is fabricated and the overall experimental system is set up. Measurement results show that the ET PA at S-band obtains measured efficiency 61%, 54%, 44% and Error Vector Magnitude (EVM) 1% for 6.7 dB PAPR signals with 5 MHz/10 MHz/20 MHz modulation bandwidths, respectively. The ET system exhibits competitive bandwidth, efficiency and linearity, which verifies the proposed optimization and linearization methodology.
-
表 2 ET系統(tǒng)測試結(jié)果
信號帶寬(MHz) DPD 功率(dBm) 增益(dB) 效率(%) ACPR1(dBc) EVM(%) 5 無 34.4 11.0 61.3 -26.7 7.50 5 有 34.4 11.0 60.8 -49.7 0.32 10 無 34.6 11.1 56.7 -26.8 8.10 10 有 34.2 10.7 53.7 -46.3 0.60 20 無 34.3 11.3 46.4 -26.4 8.90 20 有 34.1 11.1 44.1 -46.0 0.67 下載: 導(dǎo)出CSV
-
BALTEANU F, MODI H, ZHU Yu, et al. Envelope tracking system for high power applications in uplink 4G/5G LTE advanced[C]. 2018 Asia-Pacific Microwave Conference, Kyoto, Japan, 2018: 863–865. doi: 10.23919/APMC.2018.8617571. SHI Weimin, HE Songbai, ZHU Xiaoyu, et al. Broadband continuous-mode doherty power amplifiers with noninfinity peaking impedance[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 1034–1046. doi: 10.1109/TMTT.2017.2749224 HOLZER K D, YUAN Wen, and WALLING J S. Wideband techniques for outphasing power amplifiers[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(9): 2715–2725. doi: 10.1109/TCSI.2018.2800041 LIU Youjiang, YOO C S, FAIRBANKS J, et al. A 53% PAE envelope tracking GaN power amplifier for 20 MHz bandwidth LTE signals at 880 MHz[C]. 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, Austin, USA, 2016: 30–32. doi: 10.1109/PAWR.2016.7440155. HASSAN M, ASBECK P M, and LARSON L E. A CMOS dual-switching power-supply modulator with 8% efficiency improvement for 20 MHz LTE envelope tracking RF power amplifier[C]. 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, USA, 2013: 366–368. doi: 10.1109/ISSCC.2013.6487772. KOMATSUZAKI Y, LANFRANCO S, KOLMONEN T, et al. A high efficiency 3.6–4.0 GHz envelope-tracking power amplifier using GaN soft-switching buck-converter[C]. 2018 IEEE/MTT-S International Microwave Symposium, Philadelphia, USA, 2018: 465–468. doi: 10.1109/MWSYM.2018.8439225. HASSAN M, LARSON L E, LEUNG V W, et al. A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE mobile terminal applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1321–1330. doi: 10.1109/TMTT.2012.2187537 KIM J, KIM D, CHO Y, et al. Highly efficient RF transmitter over broad average power range using multilevel envelope-tracking power amplifier[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(6): 1648–1657. doi: 10.1109/TCSI.2015.2423771 WANG Yazhou, JIN Qian, and RUAN Xinbo. Optimized design of the multilevel converter in series-form switch-linear hybrid envelope-tracking power supply[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5451–5460. doi: 10.1109/TIE.2016.2565459 JIN Qian, RUAN Xinbo, REN Xiaoyong, et al. Step-wave switched capacitor converter for compact design of envelope tracking power supply[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9587–9591. doi: 10.1109/TIE.2017.2716900 LENG Yang, RUAN Xinbo, JIN Qian, et al. High-efficiency high-bandwidth switch-linear hybrid envelope-tracking power supply with slew rate split-band method[C]. 2017 IEEE Energy Conversion Congress and Exposition, Cincinnati, USA, 2017: 2246–2252. doi: 10.1109/ECCE.2017.8096438. JING Yue and BAKKALOGLU B. A high slew-rate adaptive biasing hybrid envelope tracking supply modulator for LTE applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3245–3256. doi: 10.1109/TMTT.2017.2678476 XI Huan, CAO Juan, LIU Ning, et al. High bandwidth envelope tracking power supply with pulse edge independent distribution method[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 5907–5917. doi: 10.1109/TIE.2018.2874580 KIM D, KANG D, CHOI J, et al. Optimization for envelope shaped operation of envelope tracking power amplifier[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(7): 1787–1795. doi: 10.1109/TMTT.2011.2140124 LEACH W M. Feedforward compensation of the amplifier output stage for improved stability with capacitive loads[J]. IEEE Transactions on Consumer Electronics, 1988, 34(2): 334–338. doi: 10.1109/30.2950 MKADEM F, ISLAM A, and BOUMAIZA S. Multi-band complexity reduced generalized-memory-polynomial power-amplifier digital pre-distortion[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(6): 1763–1774. doi: 10.1109/TMTT.2016.2561279 -