一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

高效寬帶包絡(luò)跟蹤系統(tǒng)電路性能優(yōu)化及非線性行為校正

曹韜 劉友江 楊春 周劼

曹韜, 劉友江, 楊春, 周劼. 高效寬帶包絡(luò)跟蹤系統(tǒng)電路性能優(yōu)化及非線性行為校正[J]. 電子與信息學(xué)報, 2020, 42(3): 787-794. doi: 10.11999/JEIT190275
引用本文: 曹韜, 劉友江, 楊春, 周劼. 高效寬帶包絡(luò)跟蹤系統(tǒng)電路性能優(yōu)化及非線性行為校正[J]. 電子與信息學(xué)報, 2020, 42(3): 787-794. doi: 10.11999/JEIT190275
Tao CAO, Youjiang LIU, Chun YANG, Jie ZHOU. Circuits Optimization and System Linearization for High Efficiency and Wideband Envelope Tracking Architecture[J]. Journal of Electronics & Information Technology, 2020, 42(3): 787-794. doi: 10.11999/JEIT190275
Citation: Tao CAO, Youjiang LIU, Chun YANG, Jie ZHOU. Circuits Optimization and System Linearization for High Efficiency and Wideband Envelope Tracking Architecture[J]. Journal of Electronics & Information Technology, 2020, 42(3): 787-794. doi: 10.11999/JEIT190275

高效寬帶包絡(luò)跟蹤系統(tǒng)電路性能優(yōu)化及非線性行為校正

doi: 10.11999/JEIT190275
基金項目: 國家自然科學(xué)基金(61601425)
詳細(xì)信息
    作者簡介:

    曹韜:男,1985年生,副研究員,研究方向為無線測控通信系統(tǒng)設(shè)計技術(shù)

    劉友江:男,1986年生,特聘研究員,研究方向為無線測控通信系統(tǒng)設(shè)計技術(shù)

    楊春:男,1972年生,研究員,研究方向為無線測控通信系統(tǒng)設(shè)計技術(shù)

    周劼:男,1972年生,研究員,研究方向為無線測控通信系統(tǒng)設(shè)計技術(shù)

    通訊作者:

    曹韜 caotaog@gmail.com

  • 中圖分類號: TN919

Circuits Optimization and System Linearization for High Efficiency and Wideband Envelope Tracking Architecture

Funds: The National Natural Science Foundation of China (61601425)
  • 摘要:

    為改善包絡(luò)跟蹤(ET)發(fā)射機(jī)帶寬、效率、線性度等指標(biāo),需優(yōu)化其關(guān)鍵電路性能并校正系統(tǒng)非線性行為。針對該問題,該文構(gòu)建電源調(diào)制器等效模型,推導(dǎo)其效率極值并闡述效率優(yōu)化方法;引入頻率補(bǔ)償網(wǎng)絡(luò)來提升電路帶寬及線性性能;基于系統(tǒng)非線性行為特征,提出包絡(luò)增強(qiáng)型數(shù)字預(yù)失真模型及線性化方案;設(shè)計實際電路并搭建包絡(luò)跟蹤系統(tǒng)。對于S頻段5/10/20 MHz帶寬6.7 dB峰均比測試信號,該系統(tǒng)功放平均效率分別為61%, 54%, 44%,且矢量幅度誤差(EVM)均優(yōu)于1%,具有較好的帶寬、效率、線性度等性能,驗證了電路優(yōu)化方法及非線性行為校正方案的可行性。

  • 圖  1  混合型EA電路結(jié)構(gòu)

    圖  2  電流采樣信號與開關(guān)波形示意圖

    圖  3  參數(shù)βh的關(guān)系曲線及不同調(diào)制信號包絡(luò)幅度概率分布

    圖  4  EA平均效率曲面3維視圖及俯視圖

    圖  5  EA線性級反饋網(wǎng)絡(luò)結(jié)構(gòu)圖

    圖  6  頻率補(bǔ)償前后線性級幅頻特性

    圖  7  EA電路實物圖及其平均效率特性

    圖  8  EA電路輸入、輸出包絡(luò)及誤差信號歸一化功率譜

    圖  9  ET測試系統(tǒng)框圖

    圖  10  ET系統(tǒng)關(guān)鍵波形實測圖(局部)

    圖  11  DPD前后ET系統(tǒng)輸出頻譜測試圖(局部)

    表  1  本文EA電路測試結(jié)果與近年文獻(xiàn)結(jié)果對比

    文獻(xiàn)/年份帶寬(MHz)負(fù)載(Ω)輸出范圍(V)輸出功率(W)效率(%)
    文獻(xiàn)[9]/2016512.0~27.04.076.0
    文獻(xiàn)[10]/201750~22.54.873.6
    文獻(xiàn)[11]/20171017.59.6~26.419.477.0
    文獻(xiàn)[12]/20171061.0~2.51.083.0
    文獻(xiàn)[13]/20191087.0~27.042.577.1
    本文407.52.5~28.018.281.7
    下載: 導(dǎo)出CSV

    表  2  ET系統(tǒng)測試結(jié)果

    信號帶寬(MHz)DPD功率(dBm)增益(dB)效率(%)ACPR1(dBc)EVM(%)
    534.411.061.3-26.77.50
    534.411.060.8-49.70.32
    1034.611.156.7-26.88.10
    1034.210.753.7-46.30.60
    2034.311.346.4-26.48.90
    2034.111.144.1-46.00.67
    下載: 導(dǎo)出CSV
  • BALTEANU F, MODI H, ZHU Yu, et al. Envelope tracking system for high power applications in uplink 4G/5G LTE advanced[C]. 2018 Asia-Pacific Microwave Conference, Kyoto, Japan, 2018: 863–865. doi: 10.23919/APMC.2018.8617571.
    SHI Weimin, HE Songbai, ZHU Xiaoyu, et al. Broadband continuous-mode doherty power amplifiers with noninfinity peaking impedance[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 1034–1046. doi: 10.1109/TMTT.2017.2749224
    HOLZER K D, YUAN Wen, and WALLING J S. Wideband techniques for outphasing power amplifiers[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(9): 2715–2725. doi: 10.1109/TCSI.2018.2800041
    LIU Youjiang, YOO C S, FAIRBANKS J, et al. A 53% PAE envelope tracking GaN power amplifier for 20 MHz bandwidth LTE signals at 880 MHz[C]. 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, Austin, USA, 2016: 30–32. doi: 10.1109/PAWR.2016.7440155.
    HASSAN M, ASBECK P M, and LARSON L E. A CMOS dual-switching power-supply modulator with 8% efficiency improvement for 20 MHz LTE envelope tracking RF power amplifier[C]. 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, USA, 2013: 366–368. doi: 10.1109/ISSCC.2013.6487772.
    KOMATSUZAKI Y, LANFRANCO S, KOLMONEN T, et al. A high efficiency 3.6–4.0 GHz envelope-tracking power amplifier using GaN soft-switching buck-converter[C]. 2018 IEEE/MTT-S International Microwave Symposium, Philadelphia, USA, 2018: 465–468. doi: 10.1109/MWSYM.2018.8439225.
    HASSAN M, LARSON L E, LEUNG V W, et al. A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE mobile terminal applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1321–1330. doi: 10.1109/TMTT.2012.2187537
    KIM J, KIM D, CHO Y, et al. Highly efficient RF transmitter over broad average power range using multilevel envelope-tracking power amplifier[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(6): 1648–1657. doi: 10.1109/TCSI.2015.2423771
    WANG Yazhou, JIN Qian, and RUAN Xinbo. Optimized design of the multilevel converter in series-form switch-linear hybrid envelope-tracking power supply[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5451–5460. doi: 10.1109/TIE.2016.2565459
    JIN Qian, RUAN Xinbo, REN Xiaoyong, et al. Step-wave switched capacitor converter for compact design of envelope tracking power supply[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9587–9591. doi: 10.1109/TIE.2017.2716900
    LENG Yang, RUAN Xinbo, JIN Qian, et al. High-efficiency high-bandwidth switch-linear hybrid envelope-tracking power supply with slew rate split-band method[C]. 2017 IEEE Energy Conversion Congress and Exposition, Cincinnati, USA, 2017: 2246–2252. doi: 10.1109/ECCE.2017.8096438.
    JING Yue and BAKKALOGLU B. A high slew-rate adaptive biasing hybrid envelope tracking supply modulator for LTE applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3245–3256. doi: 10.1109/TMTT.2017.2678476
    XI Huan, CAO Juan, LIU Ning, et al. High bandwidth envelope tracking power supply with pulse edge independent distribution method[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 5907–5917. doi: 10.1109/TIE.2018.2874580
    KIM D, KANG D, CHOI J, et al. Optimization for envelope shaped operation of envelope tracking power amplifier[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(7): 1787–1795. doi: 10.1109/TMTT.2011.2140124
    LEACH W M. Feedforward compensation of the amplifier output stage for improved stability with capacitive loads[J]. IEEE Transactions on Consumer Electronics, 1988, 34(2): 334–338. doi: 10.1109/30.2950
    MKADEM F, ISLAM A, and BOUMAIZA S. Multi-band complexity reduced generalized-memory-polynomial power-amplifier digital pre-distortion[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(6): 1763–1774. doi: 10.1109/TMTT.2016.2561279
  • 加載中
圖(11) / 表(2)
計量
  • 文章訪問數(shù):  1701
  • HTML全文瀏覽量:  1039
  • PDF下載量:  52
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-04-22
  • 修回日期:  2019-11-24
  • 網(wǎng)絡(luò)出版日期:  2019-11-30
  • 刊出日期:  2020-03-19

目錄

    /

    返回文章
    返回