一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于最優(yōu)索引廣義正交匹配追蹤的非正交多址系統(tǒng)多用戶檢測(cè)

申濱 吳和彪 崔太平 陳前斌

申濱, 吳和彪, 崔太平, 陳前斌. 基于最優(yōu)索引廣義正交匹配追蹤的非正交多址系統(tǒng)多用戶檢測(cè)[J]. 電子與信息學(xué)報(bào), 2020, 42(3): 621-628. doi: 10.11999/JEIT190270
引用本文: 申濱, 吳和彪, 崔太平, 陳前斌. 基于最優(yōu)索引廣義正交匹配追蹤的非正交多址系統(tǒng)多用戶檢測(cè)[J]. 電子與信息學(xué)報(bào), 2020, 42(3): 621-628. doi: 10.11999/JEIT190270
Bin SHEN, Hebiao WU, Taiping CUI, Qianbin CHEN. An Optimal Number of Indices Aided gOMP Algorithm for Multi-user Detection in NOMA System[J]. Journal of Electronics & Information Technology, 2020, 42(3): 621-628. doi: 10.11999/JEIT190270
Citation: Bin SHEN, Hebiao WU, Taiping CUI, Qianbin CHEN. An Optimal Number of Indices Aided gOMP Algorithm for Multi-user Detection in NOMA System[J]. Journal of Electronics & Information Technology, 2020, 42(3): 621-628. doi: 10.11999/JEIT190270

基于最優(yōu)索引廣義正交匹配追蹤的非正交多址系統(tǒng)多用戶檢測(cè)

doi: 10.11999/JEIT190270
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61571073)
詳細(xì)信息
    作者簡(jiǎn)介:

    申濱:男,1978年生,教授,研究方向?yàn)檎J(rèn)知無(wú)線電、大規(guī)模MIMO等

    吳和彪:男,1994年生,碩士生,研究方向?yàn)槊庹{(diào)度NOMA多用戶檢測(cè)

    崔太平:男,1981年生,講師,研究方向?yàn)檎J(rèn)知無(wú)線電、車聯(lián)網(wǎng)等

    陳前斌:男,1967年生,教授、博士生導(dǎo)師,研究方向?yàn)橄乱淮W(wǎng)絡(luò)、個(gè)人通信等

    通訊作者:

    申濱 shenbin@cqupt.edu.cn

  • 中圖分類號(hào): TN929.5

An Optimal Number of Indices Aided gOMP Algorithm for Multi-user Detection in NOMA System

Funds: The National Nature Science Foundation of China (61571073)
  • 摘要:

    作為5G的關(guān)鍵技術(shù)之一,非正交多址(NOMA)通過非正交方式訪問無(wú)線通信資源,以實(shí)現(xiàn)提高頻譜利用率、增加用戶連接數(shù)的目的。該文提出將壓縮感知(CS)及廣義正交匹配追蹤(gOMP)算法引入上行免調(diào)度NOMA系統(tǒng),從而增強(qiáng)NOMA系統(tǒng)活躍用戶檢測(cè)及數(shù)據(jù)接收的性能。通過每次迭代識(shí)別多個(gè)索引,gOMP算法實(shí)際上是傳統(tǒng)的正交匹配追蹤(OMP)算法的擴(kuò)展。為了獲得最優(yōu)性能,研究分析了在gOMP算法信號(hào)重構(gòu)的每次迭代中所應(yīng)選擇的最優(yōu)索引數(shù)目。仿真結(jié)果表明:與其它的貪婪追蹤算法及梯度投影稀疏重構(gòu)(GPSR)算法相比,最優(yōu)索引gOMP算法具有更優(yōu)異的信號(hào)重構(gòu)性能;并且,對(duì)于不同的活躍用戶數(shù)或過載率等參數(shù)配置的NOMA系統(tǒng),均表現(xiàn)出最優(yōu)的多用戶檢測(cè)性能。

  • 圖  1  稀疏度和索引數(shù)目對(duì)常數(shù)$\delta $的影響

    圖  2  稀疏度對(duì)gOMP精確重構(gòu)概率的影響

    圖  3  稀疏度對(duì)不同算法精確重構(gòu)概率的影響

    圖  4  取不同索引數(shù)目時(shí),gOMP算法的BER性能

    圖  5  6種貪婪算法的BER性能

    圖  6  5種多用戶檢測(cè)算法BER性能對(duì)比

    圖  7  活躍用戶數(shù)對(duì)BER性能的影響

    圖  8  過載率對(duì)BER性能的影響

    表  1  最優(yōu)索引gOMP檢測(cè)算法

     算法1 最優(yōu)索引gOMP檢測(cè)算法
     輸入 ${{y}}$, ${{H}}$, $S$, ${C_{{\rm{opt}}}}$.
     初始化:${{{r}}^0} = {{y}}$,${{{\varGamma}} ^0} = \varnothing $,$t = 0$.
     (1) While ${\left\| {{{{r}}^t}} \right\|_2} > e$ 且$t \le S$ do
     (2) $t = t + 1$;
     (3) $\eta {\rm{(}}i{\rm{)}} = \mathop {{\rm{argmax}}}\limits_{j:j \in \varOmega \backslash {\rm{\{ }}\eta {\rm{(}}i - 1{\rm{)}}, \cdots ,\eta {\rm{(2)}},\eta {\rm{(}}1{\rm{)\} }}} \left| { < {{{r}}^{t - 1}},{{{\varphi}} _j} > } \right|$;
     (4) ${{{\varGamma}} ^t} = {{{\varGamma}} ^{t - 1}} \cup {\rm{\{ }}\eta {\rm{(1),}}\eta {\rm{(2),}} ··· ,\eta {\rm{(}}{C_{{\rm{opt}}}}{\rm{)\} }}$;
     (5) ${\hat {{x} }_{ { {{\varGamma} } ^t} } } = \mathop { {\rm{argmin} } }\limits_{ u} {\left\| { {{y} } - { {{H} }_{ { {{\varGamma} } ^t} } }{{u} } } \right\|_2} = {{H} }_{ { {{\varGamma} } ^t} }^{\rm{? } }{{y} }$;
     (6) ${{{r}}^t} = {{y}} - {{{H}}_{{{{\varGamma}} ^t}}}{\hat {{x}}_{{{{\varGamma}} ^t}}}$
       end while
     輸出 ${\hat {{x} }_{ { {{\varGamma} } ^t} } } = \mathop { {\rm{argmin} } }\limits_{ u} {\left\| { {{y} } - { {{H} }_{ { {{\varGamma} } ^t} } }{{u} } } \right\|_2}$
    下載: 導(dǎo)出CSV
  • OSSEIRAN A, BOCCARDI F, BRAUN V, et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project[J]. IEEE Communications Magazine, 2014, 52(5): 26–35. doi: 10.1109/MCOM.2014.6815890
    DAI Linglong, WANG Bichai, DING Zhiguo, et al. A survey of non-orthogonal multiple access for 5G[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2294–2323. doi: 10.1109/COMST.2018.2835558
    DAI Linglong, WANG Bichai, YUAN Yifei, et al. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends[J]. IEEE Communications Magazine, 2015, 53(9): 74–81. doi: 10.1109/MCOM.2015.7263349
    ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 721–742. doi: 10.1109/COMST.2016.2621116
    HONG J P, CHOI W, and RAO B D. Sparsity controlled random multiple access with compressed sensing[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 998–1010. doi: 10.1109/TWC.2014.2363165
    CHOI J W, SHIM B, DING Yacong, et al. Compressed sensing for wireless communications: Useful tips and tricks[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1527–1550. doi: 10.1109/COMST.2017.2664421
    李燕龍, 陳曉, 詹德滿, 等. 非正交多址接入中稀疏多用戶檢測(cè)方法[J]. 西安電子科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2017, 44(3): 151–156. doi: 10.3969/j.issn.1001-2400.2017.03.026

    LI Yanlong, CHEN Xiao, ZHEN Deman, et al. Method of sparse multi-user detection in non-orthogonal multiple access[J]. Journal of Xidian University, 2017, 44(3): 151–156. doi: 10.3969/j.issn.1001-2400.2017.03.026
    SHIM B and SONG B. Multiuser detection via compressive sensing[J]. IEEE Communications Letters, 2012, 16(7): 972–974. doi: 10.1109/LCOMM.2012.050112.111980
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    NEEDELL D and VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310–316. doi: 10.1109/JSTSP.2010.2042412
    DAI Wei and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230–2249. doi: 10.1109/TIT.2009.2016006
    NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301–321. doi: 10.1016/j.acha.2008.07.002
    WANG Jian, KWON S, and SHIM B. Generalized orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6202–6216. doi: 10.1109/TSP.2012.2218810
    WANG Bichai, DAI Linglong, ZHANG Yuan, et al. Dynamic compressive sensing-based multi-user detection for uplink grant-free NOMA[J]. IEEE Communications Letters, 2016, 20(11): 2320–2323. doi: 10.1109/LCOMM.2016.2602264
    FIGUEIREDO M A T, NOWAK R D, and WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586–597. doi: 10.1109/JSTSP.2007.910281
    WANG Bichai, DAI Linglong, MIR T, et al. Joint user activity and data detection based on structured compressive sensing for NOMA[J]. IEEE Communications Letters, 2016, 20(7): 1473–1476. doi: 10.1109/LCOMM.2016.2560180
    WEI Chao, LIU Huaping, ZHANG Zaichen, et al. Approximate message passing-based joint user activity and data detection for NOMA[J]. IEEE Communications Letters, 2017, 21(3): 640–643. doi: 10.1109/LCOMM.2016.2624297
    CIRIK A C, BALASUBRAMANYA N M, and LAMPE L. Multi-user detection using ADMM-based compressive sensing for uplink grant-free NOMA[J]. IEEE Wireless Communications Letters, 2018, 7(1): 46–49. doi: 10.1109/LWC.2017.2752165
    ZHU Hao and GIANNAKIS G B. Exploiting sparse user activity in multiuser detection[J]. IEEE Transactions on Communications, 2011, 59(2): 454–465. doi: 10.1109/TCOMM.2011.121410.090570
    WANG Jian and SHIM B. Exact recovery of sparse signals using orthogonal matching pursuit: How many iterations do we need?[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4194–4202. doi: 10.1109/TSP.2016.2568162
    孫娜, 劉繼文, 肖東亮. 基于BFGS擬牛頓法的壓縮感知SL0重構(gòu)算法[J]. 電子與信息學(xué)報(bào), 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813

    SUN Na, LIU Jiwen, and XIAO Dongliang. SL0 reconstruction algorithm for compressive sensing based on BFGS quasi newton method[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813
  • 加載中
圖(8) / 表(1)
計(jì)量
  • 文章訪問數(shù):  3185
  • HTML全文瀏覽量:  979
  • PDF下載量:  86
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-04-18
  • 修回日期:  2019-07-28
  • 網(wǎng)絡(luò)出版日期:  2019-07-31
  • 刊出日期:  2020-03-19

目錄

    /

    返回文章
    返回