一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于非線性因子的改進(jìn)鳥(niǎo)群算法在動(dòng)態(tài)能耗管理中的應(yīng)用

羅鈞 劉澤偉 張平 劉學(xué)明 柳政

羅鈞, 劉澤偉, 張平, 劉學(xué)明, 柳政. 基于非線性因子的改進(jìn)鳥(niǎo)群算法在動(dòng)態(tài)能耗管理中的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2020, 42(3): 729-736. doi: 10.11999/JEIT190264
引用本文: 羅鈞, 劉澤偉, 張平, 劉學(xué)明, 柳政. 基于非線性因子的改進(jìn)鳥(niǎo)群算法在動(dòng)態(tài)能耗管理中的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2020, 42(3): 729-736. doi: 10.11999/JEIT190264
Jun LUO, Zewei LIU, Ping ZHAGN, Xueming LIU, Zheng LIU. Application of Improved Bird Swarm Algorithm Based on Nonlinear Factor in Dynamic Energy Management[J]. Journal of Electronics & Information Technology, 2020, 42(3): 729-736. doi: 10.11999/JEIT190264
Citation: Jun LUO, Zewei LIU, Ping ZHAGN, Xueming LIU, Zheng LIU. Application of Improved Bird Swarm Algorithm Based on Nonlinear Factor in Dynamic Energy Management[J]. Journal of Electronics & Information Technology, 2020, 42(3): 729-736. doi: 10.11999/JEIT190264

基于非線性因子的改進(jìn)鳥(niǎo)群算法在動(dòng)態(tài)能耗管理中的應(yīng)用

doi: 10.11999/JEIT190264
基金項(xiàng)目: 國(guó)防科工局十二五(跨十三五)技術(shù)基礎(chǔ)科研項(xiàng)目(JSJL2014209B004, JSJL2014209B005)
詳細(xì)信息
    作者簡(jiǎn)介:

    羅鈞:男,1963年生,教授,博士生導(dǎo)師,研究方向?yàn)槟J阶R(shí)與人工智能、精密機(jī)械及測(cè)試計(jì)量、智能信息處理

    劉澤偉:男,1994年生,碩士生,研究方向?yàn)榍度胧较到y(tǒng)、精密儀器及機(jī)械、測(cè)試計(jì)量技術(shù)及儀器

    張平:男,1970年生,碩士生,研究方向?yàn)榫軆x器及機(jī)械、測(cè)試計(jì)量技術(shù)及儀器

    劉學(xué)明:男,1963年生,碩士生,研究方向?yàn)榫軆x器及機(jī)械、測(cè)試計(jì)量技術(shù)及儀器

    通訊作者:

    羅鈞 luojun@cqu.edu.cn

  • 中圖分類號(hào): TP316.7

Application of Improved Bird Swarm Algorithm Based on Nonlinear Factor in Dynamic Energy Management

Funds: The Science, Technology and Industry Bureau for National Defense 12th Five-year (13th Five-year) Basic Technology Research Projects (JSJL2014209B004, JSJL2014209B005)
  • 摘要:

    針對(duì)實(shí)時(shí)系統(tǒng)能耗管理中動(dòng)態(tài)電壓調(diào)節(jié)(DVS)技術(shù)的應(yīng)用會(huì)導(dǎo)致系統(tǒng)可靠性下降的問(wèn)題,該文提出一種基于改進(jìn)鳥(niǎo)群(IoBSA)算法的動(dòng)態(tài)能耗管理法。首先,采用佳點(diǎn)集原理均勻地初始化種群,從而提高初始解的質(zhì)量,有效增強(qiáng)種群多樣性;其次,為了更好地平衡BSA算法的全局和局部搜索能力,提出非線性動(dòng)態(tài)調(diào)整因子;接著,針對(duì)嵌入式實(shí)時(shí)系統(tǒng)中處理器頻率可以動(dòng)態(tài)調(diào)整的特點(diǎn),建立具有時(shí)間和可靠性約束的功耗模型;最后,在保證實(shí)時(shí)性和穩(wěn)定性的前提下,利用提出的IoBSA算法,尋求最小能耗的解決方案。通過(guò)實(shí)驗(yàn)結(jié)果表明,與傳統(tǒng)BSA等常見(jiàn)算法相比,改進(jìn)鳥(niǎo)群算法在求解最小能耗上有著很強(qiáng)的優(yōu)勢(shì)及較快的處理速度。

  • 圖  1  兩種方法初始化點(diǎn)圖

    圖  2  頻率故障率

    圖  3  收斂曲線圖

    表  1  部分算法參數(shù)列表

    算法參數(shù)設(shè)置
    BSA$C = S = 1.5,{a_1} = {a_2} = 1,{\rm FQ} = 5,P \in [0.8,\,1]$ ${\rm FL} \in [0.5,\,0.9]$
    LSABSA${a_1} = {a_2} = 1,{\rm FQ} = 5,P \in [0.8,\,1],{\rm FL} \in [0.5,\,0.9]$ ${C_{\rm{e}}} = {S_{\rm{s}}} = 0,5,{C_{\rm{s}}} = {S_{\rm{e}}} = 2.5$
    本文${a_1} = {a_2} = 1,{\rm FQ} = 5,P \in [0.8,1],{\rm FL} \in [0.5,\,0.9]$
    IoBSA${C_{\rm{e}}} = {S_{\rm{s}}} = 0,5,{C_{\rm{s}}} = {S_{\rm{e}}} = 2$
    CBSA${Q_{\min }} = 0,{Q_{\max }} = 2,A = 0.7,r = 0.4,{P_\alpha } = 0.25$
    CJADE$F = 0.8,{C_r} = 0.5,c = 0.1,p = 0.05$
    文獻(xiàn)[10]${\rm{limit}} = 50$
    下載: 導(dǎo)出CSV

    表  2  實(shí)驗(yàn)參數(shù)列表

    參數(shù)名參數(shù)名
    種群數(shù)60任務(wù)量10 30 50
    歸一化頻率0.1~1.0截止時(shí)間20~220
    WCET20~50迭代次數(shù)1000
    運(yùn)行次數(shù)20懲罰因子5000
    下載: 導(dǎo)出CSV

    表  3  任務(wù)量為10的優(yōu)化結(jié)果

    NPM-ValSt.BSA本文IoBSALSABSACSBAGWOCJADE文獻(xiàn)[10]
    375.57Best853.45821.52896.571040.55830.83904.091187.05
    (min)Worst1110.961040.011090.471178.551053.471123.841061.25
    3427.05Mean967.95913.041005.061105.57964.941035.831147.21
    (max)Std.Dev58.1857.6660.3634.8550.4653.9255.25
    下載: 導(dǎo)出CSV

    表  4  任務(wù)量為30的優(yōu)化結(jié)果

    NPM-ValSt.BSA本文IoBSALSABSACSBAGWOCJADE文獻(xiàn)[10]
    1126.70Best4355.133642.204197.414048.744353.494382.294881.90
    (min)Worst5158.384936.645175.335033.735234.8535021.295470.92
    10281.15Mean4771.524368.304739.584519.134681.224677.564928.57
    (max)Std.Dev215.87345.31269.02238.77223.95150.11304.62
    下載: 導(dǎo)出CSV

    表  5  任務(wù)量為50的優(yōu)化結(jié)果

    NPM-ValSt.BSA本文IoBSALSABSACSBAGWOCJADE文獻(xiàn)[10]
    1877.83Best8572.388281.548610.62無(wú)效8384.888416.94無(wú)效
    (min)Worst10442.7410023.1810149.21無(wú)效無(wú)效無(wú)效無(wú)效
    17135.25Mean9557.829319.579513.31無(wú)效無(wú)效無(wú)效無(wú)效
    (max)Std.Dev587.00535.50520.50643448.64529852.0175029.971147609.95
    下載: 導(dǎo)出CSV
  • SALEHI M E, SAMADI M, NAJIBI M, et al. Dynamic voltage and frequency scheduling for embedded processors considering power/performance tradeoffs[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2011, 19(10): 1931–1935. doi: 10.1109/tvlsi.2010.2057520
    TERZOPOULOS G and KARATZA H. Performance evaluation and energy consumption of a real-time heterogeneous grid system using DVS and DPM[J]. Simulation Modelling Practice and Theory, 2013, 36: 33–43. doi: 10.1016/j.simpat.2013.04.006
    ERNST D, DAS S, LEE S, et al. Razor: Circuit-level correction of timing errors for low-power operation[J]. IEEE Micro, 2004, 24(6): 10–20. doi: 10.1109/MM.2004.85
    RONG Peng, PEDRAM M. Energy-aware task scheduling and dynamic voltage scaling in a real-time system[J]. Journal of Low Power Electronics, 2008, 4(1): 1–10. doi: 10.1166/jolpe.2008.154
    韓文雅, 王雷. 基于混合任務(wù)模型的動(dòng)態(tài)電壓調(diào)度在無(wú)線傳感器網(wǎng)絡(luò)中的應(yīng)用[J]. 計(jì)算機(jī)應(yīng)用, 2010, 30(9): 2522–2525. doi: 10.3724/SP.J.1087.2010.02522

    HAN Wenya and WANG Lei. Application of dynamic voltage scaling based on hybrid-task model in wireless sensor network[J]. Journal of Computer Applications, 2010, 30(9): 2522–2525. doi: 10.3724/SP.J.1087.2010.02522
    ZHAO Baoxian, AYDIN H, and ZHU Dakai. On maximizing reliability of real-time embedded applications under hard energy constraint[J]. IEEE Transactions on Industrial Informatics, 2010, 6(3): 316–328. doi: 10.1109/tii.2010.2051970
    晏福, 徐建中, 李奉書(shū). 混沌灰狼優(yōu)化算法訓(xùn)練多層感知器[J]. 電子與信息學(xué)報(bào), 2019, 41(4): 872–879. doi: 10.11999/JEIT180519

    YAN Fu, XU Jianzhong, and LI Fengshu. Training multi-layer perceptrons using chaos grey wolf optimizer[J]. Journal of Electronics &Information Technology, 2019, 41(4): 872–879. doi: 10.11999/JEIT180519
    張興明, 殷從月, 魏帥, 等. 基于雙仲裁機(jī)制和田口正交法的貓群優(yōu)化任務(wù)調(diào)度算法[J]. 電子與信息學(xué)報(bào), 2018, 40(10): 2521–2528. doi: 10.11999/JEIT180215

    ZHANG Xingming, YIN Congyue, WEI Shuai, et al. Cat swarm optimization task scheduling algorithm based on double arbitration mechanism and Taguchi orthogonal method[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2521–2528. doi: 10.11999/JEIT180215
    肖樂(lè)意, 歐陽(yáng)紅林, 范朝冬. 基于記憶分子動(dòng)理論優(yōu)化算法的多目標(biāo)截面投影Otsu圖像分割[J]. 電子與信息學(xué)報(bào), 2018, 40(1): 189–199. doi: 10.11999/JEIT170301

    XIAO Leyi, OUYANG Honglin, and FAN Chaodong. Multi-objective cross section projection Otsu's method based on memory knetic-molecular theory optimization algorithm[J]. Journal of Electronics &Information Technology, 2018, 40(1): 189–199. doi: 10.11999/JEIT170301
    羅鈞, 劉永鋒, 付麗. 能耗限制的實(shí)時(shí)周期任務(wù)可靠性感知調(diào)度[J]. 重慶大學(xué)學(xué)報(bào), 2011, 34(8): 86–89. doi: 10.11835/j.issn.1000-582x.2011.08.015

    LUO Jun, LIU Yongfeng, and FU Li. Reliability-aware schedule of periodic tasks in energy-constrained real-time systems[J]. Journal of Chongqing University, 2011, 34(8): 86–89. doi: 10.11835/j.issn.1000-582x.2011.08.015
    MENG Xianbing, GAO X Z, LU Lihua, et al. A new bio-inspired optimisation algorithm: bird swarm algorithm[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2016, 28(4): 673–687. doi: 10.1080/0952813X.2015.1042530
    楊文榮, 馬曉燕, 邊鑫磊. 基于Levy飛行策略的自適應(yīng)改進(jìn)鳥(niǎo)群算法[J]. 河北工業(yè)大學(xué)學(xué)報(bào), 2017, 46(5): 10–16. doi: 10.14081/j.cnki.hgdxb.2017.05.002

    YANG Wenrong, MA Xiaoyan, and BIAN Xinlei. Adaptive improved bird swarm algorithm based on Levy flight strategy[J]. Journal of Hebei University of Technology, 2017, 46(5): 10–16. doi: 10.14081/j.cnki.hgdxb.2017.05.002
    李延延, 萬(wàn)仁霞. 一種改進(jìn)算的鳥(niǎo)群算法[J]. 微電子學(xué)與計(jì)算機(jī), 2018, 35(9): 79–84.

    LI Yanyan and WAN Renxia. An improved algorithm for bird swarm optimization[J]. Microelectronics &Computer, 2018, 35(9): 79–84.
    吳軍, 王龍龍. 基于雙鳥(niǎo)群混沌優(yōu)化的Otsu圖像分割算法[J]. 微電子學(xué)與計(jì)算機(jī), 2018, 35(12): 119–124. doi: 10.19304/j.cnki.issn1000-7180.2018.12.024

    WU Jun and WANG Longlong. An Otsu image segmentation algorithm based on chaos optimization of two BSA[J]. Microelectronics &Computer, 2018, 35(12): 119–124. doi: 10.19304/j.cnki.issn1000-7180.2018.12.024
    王進(jìn)成, 高岳林. 基于改進(jìn)的鳥(niǎo)群算法求解農(nóng)產(chǎn)品冷鏈物流配送路徑優(yōu)化問(wèn)題[J]. 安徽農(nóng)業(yè)科學(xué), 2018, 46(25): 1–4. doi: 10.13989/j.cnki.0517-6611.2018.25.001

    WANG Jincheng and GAO Yuelin. Optimization problem of cold chain logistics distribution path of agricultural products based on improved algorithm of bird swarm optimization[J]. Journal of Anhui Agricultural Sciences, 2018, 46(25): 1–4. doi: 10.13989/j.cnki.0517-6611.2018.25.001
    謝國(guó)民, 干毅軍, 丁會(huì)巧. 基于佳點(diǎn)集的蝙蝠定位算法在WSN中應(yīng)用[J]. 傳感技術(shù)學(xué)報(bào), 2017, 30(8): 1252–1257. doi: 10.3969/j.issn.1004-1699.2017.08.021

    XIE Guomin, GAN Yijun, and DING Huiqiao. A positioning algorithm based on bat algorithm and good-point setsin the application of WSN[J]. Chinese Journal of Sensors and Actuators, 2017, 30(8): 1252–1257. doi: 10.3969/j.issn.1004-1699.2017.08.021
    ZHU D, MELHEM R, and CHILDERS B. Scheduling with dynamic voltage/speed adjustment using slack reclamation in multi-processor real-time systems[C]. Proceedings of the 22nd IEEE Real-time Systems Symposium, London, UK, 2001: 84–94.
    SHEHAB M, KHADER A T, LAOUCHEDI M, et al. Hybridizing cuckoo search algorithm with bat algorithm for global numerical optimization[J]. The Journal of Supercomputing, 2019, 75(5): 2395–2422. doi: 10.1007/s11227-018-2625-x
    MIRJALILI S, MIRJALILI S M, and LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46–61. doi: 10.1016/j.advengsoft.2013.12.007
    羅鈞, 楊永松, 侍寶玉. 基于改進(jìn)的自適應(yīng)差分演化算法的二維Otsu多閾值圖像分割[J]. 電子與信息學(xué)報(bào), 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949

    LUO Jun, YANG Yongsong, and SHI Baoyu. multi-threshold image segmentation of 2D Otsu based on improved adaptive differential evolution algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949
  • 加載中
圖(3) / 表(5)
計(jì)量
  • 文章訪問(wèn)數(shù):  2873
  • HTML全文瀏覽量:  786
  • PDF下載量:  56
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-04-18
  • 修回日期:  2019-10-08
  • 網(wǎng)絡(luò)出版日期:  2019-10-16
  • 刊出日期:  2020-03-19

目錄

    /

    返回文章
    返回