基于非線性因子的改進(jìn)鳥(niǎo)群算法在動(dòng)態(tài)能耗管理中的應(yīng)用
doi: 10.11999/JEIT190264
-
1.
重慶大學(xué)光電技術(shù)及系統(tǒng)教育部重點(diǎn)實(shí)驗(yàn)室 重慶 400030
-
2.
兵器工業(yè) 5011 區(qū)域計(jì)量站 重慶 400050
Application of Improved Bird Swarm Algorithm Based on Nonlinear Factor in Dynamic Energy Management
-
1.
Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030, China
-
2.
5011 District Measurement Station of Weapon Industry, Chongqing 400050, China
-
摘要:
針對(duì)實(shí)時(shí)系統(tǒng)能耗管理中動(dòng)態(tài)電壓調(diào)節(jié)(DVS)技術(shù)的應(yīng)用會(huì)導(dǎo)致系統(tǒng)可靠性下降的問(wèn)題,該文提出一種基于改進(jìn)鳥(niǎo)群(IoBSA)算法的動(dòng)態(tài)能耗管理法。首先,采用佳點(diǎn)集原理均勻地初始化種群,從而提高初始解的質(zhì)量,有效增強(qiáng)種群多樣性;其次,為了更好地平衡BSA算法的全局和局部搜索能力,提出非線性動(dòng)態(tài)調(diào)整因子;接著,針對(duì)嵌入式實(shí)時(shí)系統(tǒng)中處理器頻率可以動(dòng)態(tài)調(diào)整的特點(diǎn),建立具有時(shí)間和可靠性約束的功耗模型;最后,在保證實(shí)時(shí)性和穩(wěn)定性的前提下,利用提出的IoBSA算法,尋求最小能耗的解決方案。通過(guò)實(shí)驗(yàn)結(jié)果表明,與傳統(tǒng)BSA等常見(jiàn)算法相比,改進(jìn)鳥(niǎo)群算法在求解最小能耗上有著很強(qiáng)的優(yōu)勢(shì)及較快的處理速度。
-
關(guān)鍵詞:
- 能耗管理 /
- 實(shí)時(shí)系統(tǒng) /
- 動(dòng)態(tài)電壓調(diào)節(jié) /
- 改進(jìn)鳥(niǎo)群算法
Abstract:The application of Dynamic Voltage Scaling (DVS) technique in real-time system energy management will result in the decrease of system reliability. A dynamic energy management method based on Improved Bird Swarm Algorithm (IoBSA) is proposed in this paper. Firstly, the population is initialized uniformly with the principle of good point set, so as to improve the quality of initial solution and increase the diversity of population effectively. Secondly, in order to balance better the global and local search ability of BSA algorithm, the nonlinear dynamic adjustment factor is proposed. Then, a power consumption model with time and reliability constraints is established for the dynamic adjustment of processor frequency in embedded real-time systems. On the premise of ensuring real-time performance and stability, the proposed IoBSA algorithm is used to find the solution with minimum energy consumption. The experimental results show that compared with the traditional BSA algorithm and other common algorithms, the improved bird swarm algorithm has a strong advantage in solving the minimum energy consumption and a fast processing speed energy management.
-
表 1 部分算法參數(shù)列表
算法 參數(shù)設(shè)置 BSA $C = S = 1.5,{a_1} = {a_2} = 1,{\rm FQ} = 5,P \in [0.8,\,1]$ ${\rm FL} \in [0.5,\,0.9]$ LSABSA ${a_1} = {a_2} = 1,{\rm FQ} = 5,P \in [0.8,\,1],{\rm FL} \in [0.5,\,0.9]$ ${C_{\rm{e}}} = {S_{\rm{s}}} = 0,5,{C_{\rm{s}}} = {S_{\rm{e}}} = 2.5$ 本文 ${a_1} = {a_2} = 1,{\rm FQ} = 5,P \in [0.8,1],{\rm FL} \in [0.5,\,0.9]$ IoBSA ${C_{\rm{e}}} = {S_{\rm{s}}} = 0,5,{C_{\rm{s}}} = {S_{\rm{e}}} = 2$ CBSA ${Q_{\min }} = 0,{Q_{\max }} = 2,A = 0.7,r = 0.4,{P_\alpha } = 0.25$ CJADE $F = 0.8,{C_r} = 0.5,c = 0.1,p = 0.05$ 文獻(xiàn)[10] ${\rm{limit}} = 50$ 下載: 導(dǎo)出CSV
表 2 實(shí)驗(yàn)參數(shù)列表
參數(shù)名 值 參數(shù)名 值 種群數(shù) 60 任務(wù)量 10 30 50 歸一化頻率 0.1~1.0 截止時(shí)間 20~220 WCET 20~50 迭代次數(shù) 1000 運(yùn)行次數(shù) 20 懲罰因子 5000 下載: 導(dǎo)出CSV
表 3 任務(wù)量為10的優(yōu)化結(jié)果
NPM-Val St. BSA 本文IoBSA LSABSA CSBA GWO CJADE 文獻(xiàn)[10] 375.57 Best 853.45 821.52 896.57 1040.55 830.83 904.09 1187.05 (min) Worst 1110.96 1040.01 1090.47 1178.55 1053.47 1123.84 1061.25 3427.05 Mean 967.95 913.04 1005.06 1105.57 964.94 1035.83 1147.21 (max) Std.Dev 58.18 57.66 60.36 34.85 50.46 53.92 55.25 下載: 導(dǎo)出CSV
表 4 任務(wù)量為30的優(yōu)化結(jié)果
NPM-Val St. BSA 本文IoBSA LSABSA CSBA GWO CJADE 文獻(xiàn)[10] 1126.70 Best 4355.13 3642.20 4197.41 4048.74 4353.49 4382.29 4881.90 (min) Worst 5158.38 4936.64 5175.33 5033.73 5234.853 5021.29 5470.92 10281.15 Mean 4771.52 4368.30 4739.58 4519.13 4681.22 4677.56 4928.57 (max) Std.Dev 215.87 345.31 269.02 238.77 223.95 150.11 304.62 下載: 導(dǎo)出CSV
表 5 任務(wù)量為50的優(yōu)化結(jié)果
NPM-Val St. BSA 本文IoBSA LSABSA CSBA GWO CJADE 文獻(xiàn)[10] 1877.83 Best 8572.38 8281.54 8610.62 無(wú)效 8384.88 8416.94 無(wú)效 (min) Worst 10442.74 10023.18 10149.21 無(wú)效 無(wú)效 無(wú)效 無(wú)效 17135.25 Mean 9557.82 9319.57 9513.31 無(wú)效 無(wú)效 無(wú)效 無(wú)效 (max) Std.Dev 587.00 535.50 520.50 643448.64 529852.01 75029.97 1147609.95 下載: 導(dǎo)出CSV
-
SALEHI M E, SAMADI M, NAJIBI M, et al. Dynamic voltage and frequency scheduling for embedded processors considering power/performance tradeoffs[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2011, 19(10): 1931–1935. doi: 10.1109/tvlsi.2010.2057520 TERZOPOULOS G and KARATZA H. Performance evaluation and energy consumption of a real-time heterogeneous grid system using DVS and DPM[J]. Simulation Modelling Practice and Theory, 2013, 36: 33–43. doi: 10.1016/j.simpat.2013.04.006 ERNST D, DAS S, LEE S, et al. Razor: Circuit-level correction of timing errors for low-power operation[J]. IEEE Micro, 2004, 24(6): 10–20. doi: 10.1109/MM.2004.85 RONG Peng, PEDRAM M. Energy-aware task scheduling and dynamic voltage scaling in a real-time system[J]. Journal of Low Power Electronics, 2008, 4(1): 1–10. doi: 10.1166/jolpe.2008.154 韓文雅, 王雷. 基于混合任務(wù)模型的動(dòng)態(tài)電壓調(diào)度在無(wú)線傳感器網(wǎng)絡(luò)中的應(yīng)用[J]. 計(jì)算機(jī)應(yīng)用, 2010, 30(9): 2522–2525. doi: 10.3724/SP.J.1087.2010.02522HAN Wenya and WANG Lei. Application of dynamic voltage scaling based on hybrid-task model in wireless sensor network[J]. Journal of Computer Applications, 2010, 30(9): 2522–2525. doi: 10.3724/SP.J.1087.2010.02522 ZHAO Baoxian, AYDIN H, and ZHU Dakai. On maximizing reliability of real-time embedded applications under hard energy constraint[J]. IEEE Transactions on Industrial Informatics, 2010, 6(3): 316–328. doi: 10.1109/tii.2010.2051970 晏福, 徐建中, 李奉書(shū). 混沌灰狼優(yōu)化算法訓(xùn)練多層感知器[J]. 電子與信息學(xué)報(bào), 2019, 41(4): 872–879. doi: 10.11999/JEIT180519YAN Fu, XU Jianzhong, and LI Fengshu. Training multi-layer perceptrons using chaos grey wolf optimizer[J]. Journal of Electronics &Information Technology, 2019, 41(4): 872–879. doi: 10.11999/JEIT180519 張興明, 殷從月, 魏帥, 等. 基于雙仲裁機(jī)制和田口正交法的貓群優(yōu)化任務(wù)調(diào)度算法[J]. 電子與信息學(xué)報(bào), 2018, 40(10): 2521–2528. doi: 10.11999/JEIT180215ZHANG Xingming, YIN Congyue, WEI Shuai, et al. Cat swarm optimization task scheduling algorithm based on double arbitration mechanism and Taguchi orthogonal method[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2521–2528. doi: 10.11999/JEIT180215 肖樂(lè)意, 歐陽(yáng)紅林, 范朝冬. 基于記憶分子動(dòng)理論優(yōu)化算法的多目標(biāo)截面投影Otsu圖像分割[J]. 電子與信息學(xué)報(bào), 2018, 40(1): 189–199. doi: 10.11999/JEIT170301XIAO Leyi, OUYANG Honglin, and FAN Chaodong. Multi-objective cross section projection Otsu's method based on memory knetic-molecular theory optimization algorithm[J]. Journal of Electronics &Information Technology, 2018, 40(1): 189–199. doi: 10.11999/JEIT170301 羅鈞, 劉永鋒, 付麗. 能耗限制的實(shí)時(shí)周期任務(wù)可靠性感知調(diào)度[J]. 重慶大學(xué)學(xué)報(bào), 2011, 34(8): 86–89. doi: 10.11835/j.issn.1000-582x.2011.08.015LUO Jun, LIU Yongfeng, and FU Li. Reliability-aware schedule of periodic tasks in energy-constrained real-time systems[J]. Journal of Chongqing University, 2011, 34(8): 86–89. doi: 10.11835/j.issn.1000-582x.2011.08.015 MENG Xianbing, GAO X Z, LU Lihua, et al. A new bio-inspired optimisation algorithm: bird swarm algorithm[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2016, 28(4): 673–687. doi: 10.1080/0952813X.2015.1042530 楊文榮, 馬曉燕, 邊鑫磊. 基于Levy飛行策略的自適應(yīng)改進(jìn)鳥(niǎo)群算法[J]. 河北工業(yè)大學(xué)學(xué)報(bào), 2017, 46(5): 10–16. doi: 10.14081/j.cnki.hgdxb.2017.05.002YANG Wenrong, MA Xiaoyan, and BIAN Xinlei. Adaptive improved bird swarm algorithm based on Levy flight strategy[J]. Journal of Hebei University of Technology, 2017, 46(5): 10–16. doi: 10.14081/j.cnki.hgdxb.2017.05.002 李延延, 萬(wàn)仁霞. 一種改進(jìn)算的鳥(niǎo)群算法[J]. 微電子學(xué)與計(jì)算機(jī), 2018, 35(9): 79–84.LI Yanyan and WAN Renxia. An improved algorithm for bird swarm optimization[J]. Microelectronics &Computer, 2018, 35(9): 79–84. 吳軍, 王龍龍. 基于雙鳥(niǎo)群混沌優(yōu)化的Otsu圖像分割算法[J]. 微電子學(xué)與計(jì)算機(jī), 2018, 35(12): 119–124. doi: 10.19304/j.cnki.issn1000-7180.2018.12.024WU Jun and WANG Longlong. An Otsu image segmentation algorithm based on chaos optimization of two BSA[J]. Microelectronics &Computer, 2018, 35(12): 119–124. doi: 10.19304/j.cnki.issn1000-7180.2018.12.024 王進(jìn)成, 高岳林. 基于改進(jìn)的鳥(niǎo)群算法求解農(nóng)產(chǎn)品冷鏈物流配送路徑優(yōu)化問(wèn)題[J]. 安徽農(nóng)業(yè)科學(xué), 2018, 46(25): 1–4. doi: 10.13989/j.cnki.0517-6611.2018.25.001WANG Jincheng and GAO Yuelin. Optimization problem of cold chain logistics distribution path of agricultural products based on improved algorithm of bird swarm optimization[J]. Journal of Anhui Agricultural Sciences, 2018, 46(25): 1–4. doi: 10.13989/j.cnki.0517-6611.2018.25.001 謝國(guó)民, 干毅軍, 丁會(huì)巧. 基于佳點(diǎn)集的蝙蝠定位算法在WSN中應(yīng)用[J]. 傳感技術(shù)學(xué)報(bào), 2017, 30(8): 1252–1257. doi: 10.3969/j.issn.1004-1699.2017.08.021XIE Guomin, GAN Yijun, and DING Huiqiao. A positioning algorithm based on bat algorithm and good-point setsin the application of WSN[J]. Chinese Journal of Sensors and Actuators, 2017, 30(8): 1252–1257. doi: 10.3969/j.issn.1004-1699.2017.08.021 ZHU D, MELHEM R, and CHILDERS B. Scheduling with dynamic voltage/speed adjustment using slack reclamation in multi-processor real-time systems[C]. Proceedings of the 22nd IEEE Real-time Systems Symposium, London, UK, 2001: 84–94. SHEHAB M, KHADER A T, LAOUCHEDI M, et al. Hybridizing cuckoo search algorithm with bat algorithm for global numerical optimization[J]. The Journal of Supercomputing, 2019, 75(5): 2395–2422. doi: 10.1007/s11227-018-2625-x MIRJALILI S, MIRJALILI S M, and LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46–61. doi: 10.1016/j.advengsoft.2013.12.007 羅鈞, 楊永松, 侍寶玉. 基于改進(jìn)的自適應(yīng)差分演化算法的二維Otsu多閾值圖像分割[J]. 電子與信息學(xué)報(bào), 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949LUO Jun, YANG Yongsong, and SHI Baoyu. multi-threshold image segmentation of 2D Otsu based on improved adaptive differential evolution algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949 -