基于稀疏和低秩恢復(fù)的穩(wěn)健DOA估計(jì)方法
doi: 10.11999/JEIT190263
-
大連大學(xué)信息工程學(xué)院 大連 116622
Sparse and Low Rank Recovery Based Robust DOA Estimation Method
-
College of Information Engineering, Dalian University, Dalian 116622, China
-
摘要:
該文針對(duì)有限次采樣導(dǎo)致傳統(tǒng)波達(dá)方向角(DOA)估計(jì)算法存在較大估計(jì)誤差的問題,提出一種基于稀疏低秩分解(SLRD)的穩(wěn)健DOA估計(jì)方法。首先,基于低秩矩陣分解方法,將接收信號(hào)協(xié)方差矩陣建模為低秩無噪?yún)f(xié)方差及稀疏噪聲協(xié)方差矩陣之和;而后基于低秩恢復(fù)理論,構(gòu)造關(guān)于信號(hào)和噪聲協(xié)方差矩陣的凸優(yōu)化問題;再者構(gòu)建關(guān)于采樣協(xié)方差矩陣估計(jì)誤差的凸模型,并將此凸集顯式包含進(jìn)凸優(yōu)化問題以改善信號(hào)協(xié)方差矩陣估計(jì)性能進(jìn)而提高DOA估計(jì)精度及穩(wěn)健性;最后基于所得最優(yōu)無噪聲協(xié)方差矩陣,利用最小方差無畸變響應(yīng)(MVDR)方法實(shí)現(xiàn)DOA估計(jì)。此外,基于采樣協(xié)方差矩陣估計(jì)誤差服從漸進(jìn)正態(tài)分布的統(tǒng)計(jì)特性,該文推導(dǎo)了一種誤差參數(shù)因子選取準(zhǔn)則以較好重構(gòu)無噪聲協(xié)方差矩陣。數(shù)值仿真表明,與傳統(tǒng)常規(guī)波束形成(CBF)、最小方差無畸變響應(yīng)(MVDR)、傳統(tǒng)多重信號(hào)分類(MUSIC)及基于稀疏低秩分解的增強(qiáng)拉格朗日乘子(SLD-ALM)算法相比,有限次采樣條件下所提算法具有較高DOA估計(jì)精度及較好穩(wěn)健性能。
Abstract:Focusing on the problem of rather large estimation error in the traditional Direction Of Arrival (DOA) estimation algorithm induced by finite subsampling, a robust DOA estimation method based on Sparseand Low Rank Decomposition (SLRD) is proposed in this paper. Following the low-rank matrix decomposition method, the received signal covariance matrix is firstly modeled as the sum of the low-rank noise-free covariance matrix and sparse noise covariance one. After that, the convex optimization problem associated with the signal and noise covariance matrix is constructed on the basis of the low rank recovery theory. Subsequently, a convex model of the estimation error of the sampling covariance matrix can be formulated, and this convex set is explicitly included into the convex optimization problem to improve the estimation performance of signal covariance matrix such that the estimation accuracy and robustness of DOA can be enhanced. Finally, with the obtained optimal noiseless covariance matrix, the DOA estimation can be implemented by employing the Minimum Variance Distortionless Response (MVDR) method. In addition, exploiting the statistical characteristics of the sampling covariance matrix estimation error subjecting to the asymptotic normal distribution, an error parameter factor selection criterion is deduced to reconstruct the noise-free covariance matrix preferably. Compared with the traditional Conventional BeamForming (CBF), Minimum Variance Distortionless Response(MVDR), MUltiple SIgnal Classification (MUSIC) and Sparse and Low-rank Decomposition based Augmented Lagrange Multiplier(SLD-ALM) algorithms, numerical simulations show that the proposed algorithm has higher DOA estimation accuracy and better robustness performance under finite sampling snapshot.
-
Key words:
- Direction Of Arrival (DOA) /
- Low rank recovery /
- Sparse /
- Convex optimization
-
表 1 誤差參數(shù)對(duì)算法重構(gòu)性能影響
誤差參數(shù)($\eta $) 理想${R_{\rm s} }$對(duì)角線均值 理想$R$對(duì)角線均值 重構(gòu)${R_{\rm s} }$對(duì)角線均值 重構(gòu)$R$對(duì)角線均值 0.1 6.3246 7.4181 6.3110 7.3918 1 6.3246 7.3384 5.9738 7.0775 4 6.3246 7.3271 5.2290 6.2905 8 6.3246 7.3012 4.1855 5.2388 12 6.3246 7.2275 3.0957 4.1583 16 6.3246 7.3268 2.1294 3.1999 19 6.3246 7.3724 1.3133 2.4336 下載: 導(dǎo)出CSV
-
GUO Muran, ZHANG Y D, and CHEN Tao. DOA estimation using compressed sparse array[J]. IEEE Transactions on Signal Processing, 2018, 66(15): 4133–4146. doi: 10.1109/TSP.2018.2847645 ZHENG Guimei. DOA estimation in MIMO radar with non-perfectly orthogonal waveforms[J]. IEEE Communications Letters, 2017, 21(2): 414–417. doi: 10.1109/LCOMM.2016.2622691 CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408–1418. doi: 10.1109/PROC.1969.7278 ZHU Shaohao, YANG Kunde, MA Yuanliang, et al. Robust minimum variance distortionless response beamforming using subarray multistage processing for circular hydrophone arrays[C]. 2016 Techno-Ocean, Kobe, Japan, 2016: 692–696. doi: 10.1109/Techno-Ocean.2016.7890744. 李立欣, 白童童, 張會(huì)生, 等. 改進(jìn)的雙約束穩(wěn)健Capon波束形成算法[J]. 電子與信息學(xué)報(bào), 2016, 38(8): 2014–2019. doi: 10.11999/JEIT151213LI Lixin, BAI Tongtong, ZHANG Huisheng, et al. Improved double constraint robust capon beamforming algorithm[J]. Journal of Electronics &Information Technology, 2016, 38(8): 2014–2019. doi: 10.11999/JEIT151213 VAN TREES H L. Optimum Array Processing: Part IV of Detection, Estimation and Modulation Theory[M]. New York: Wiley-Interscience, 2002. LIAO Bin, GUO Chongtao, HUANG Lei, et al. Matrix completion based direction-of-arrival estimation in nonuniform noise[C]. 2016 IEEE International Conference on Digital Signal Processing, Beijing, China, 2016: 66–69. SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830 HE Shun, YANG Zhiwei, and LIAO Guisheng. DOA estimation of wideband signals based on iterative spectral reconstruction[J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1039–1045. doi: 10.21629/JSEE.2017.06.01 GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881–3885. doi: 10.1109/TSP.2012.2194289 陳沛, 趙擁軍, 劉成城. 基于稀疏重構(gòu)的共形陣列穩(wěn)健自適應(yīng)波束形成算法[J]. 電子與信息學(xué)報(bào), 2017, 39(2): 301–308. doi: 10.11999/JEIT160436CHEN Pei, ZHAO Yongjun, and LIU Chengcheng. Robust adaptive beamforming algorithm for conformal arrays based on sparse reconstruction[J]. Journal of Electronics &Information Technology, 2017, 39(2): 301–308. doi: 10.11999/JEIT160436 HU Rui, FU Yuli, CHEN Zhen, et al. Robust DOA estimation via sparse signal reconstruction with impulsive noise[J]. IEEE Communications Letters, 2017, 21(6): 1333–1336. doi: 10.1109/LCOMM.2017.2675407 HUANG Weibin and LI Hui. An improved DOA estimation algorithm based on sparse reconstruction[C]. The 11th International Symposium on Antennas, Propagation and EM Theory, Guilin, China, 2016: 621–625. GU Yujie, GOODMAN N A, HONG Shaohua, et al. Robust adaptive beamforming based on interference covariance matrix sparse reconstruction[J]. Signal Processing, 2014, 96: 375–381. doi: 10.1016/j.sigpro.2013.10.009 HUANG Lei, ZHANG Jing, XU Xu, et al. Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method[J]. IEEE Transactions on Signal Processing, 2015, 63(7): 1643–1650. doi: 10.1109/tsp.2015.2396002 韋娟, 計(jì)永祥, ??∪? 一種新的稀疏重構(gòu)的DOA估計(jì)算法[J]. 西安電子科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2018, 45(5): 13–18. doi: 10.3969/j.issn.1001-2400.2018.05.003WEI Juan, JI Yongxiang, and NIU Junru. Novel algorithm for DOA estimation based on the sparse reconstruction[J]. Journal of Xidian University:Natural Science, 2018, 45(5): 13–18. doi: 10.3969/j.issn.1001-2400.2018.05.003 CHEN Yong, WANG Fang, WAN Jianwei, et al. Sparse and low-rank decomposition of covariance matrix for efficient DOA estimation[C]. The 9th IEEE International Conference on Communication Software and Networks, Guangzhou, China, 2017: 957–961. WANG Xianpeng, ZHU Yanghui, HUANG Mengxing, et al. Unitary matrix completion-based DOA estimation of noncircular signals in nonuniform noise[J]. IEEE Access, 2019, 7: 73719–73728. doi: 10.1109/ACCESS.2019.2920707 CANDES E J and PLAN Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98(6): 925–936. doi: 10.1109/jproc.2009.2035722 HE Zhenqing, SHI Zhiping, and HUANG Lei. Covariance sparsity-aware DOA estimation for nonuniform noise[J]. Digital Signal Processing, 2014, 28: 75–81. doi: 10.1016/j.dsp.2014.02.013 BLANCHARD P and BRüNING E. Constrained Minimization Problems (Method of Lagrange Multipliers)[M]. BLANCHARD P and BRüNING E. Mathematical Methods in Physics. Cham: Birkh?user, 2015: 537–546. LEE S, YOON Y J, LEE J E, et al. Two-stage DOA estimation method for low SNR signals in automotive radars[J]. IET Radar, Sonar & Navigation, 2017, 11(11): 1613–1619. doi: 10.1049/iet-rsn.2017.0221 TIAN Ye, SUN Xiaoying, and ZHAO Shishun. DOA and power estimation using a sparse representation of second-order statistics vector and ${\ell _0} $ -norm approximation[J]. Signal Processing, 2014, 105: 98–108. doi: 10.1016/j.sigpro.2014.05.014HU Yao, ZHANG Debing, YE Jieping, et al. Fast and accurate matrix completion via truncated nuclear norm regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2117–2130. doi: 10.1109/tpami.2012.271 MALIOUTOV D, ?ETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010–3022. doi: 10.1109/TSP.2005.850882 WRIGHT J, GANESH A, RAO S, et al. Robust principal component analysis: Exact recovery of corrupted low-rank matrices[J]. arXiv: 0905.0233, 2009. HAN Le and LIU Xiaolan. Convex relaxation algorithm for a structured simultaneous low-rank and sparse recovery problem[J]. Journal of the Operations Research Society of China, 2015, 3(3): 363–379. doi: 10.1007/s40305-015-0089-8 WANG Xianpeng, WANG Luyun, LI Xiumei, et al. Nuclear norm minimization framework for DOA estimation in MIMO radar[J]. Signal Processing, 2017, 135: 147–152. doi: 10.1016/j.sigpro.2016.12.031 LUO Xiaoyu, FEI Xiaochao, GAN Lu, et al. Direction-of-arrival estimation using an array covariance vector and a reweighted norm[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2015, E98.A(9): 1964–1967. doi: 10.1587/transfun.E98.A.1964 LIAO Bin, GUO Chongtao, and SO H. Direction-of-arrival estimation in nonuniform noise via low-rank matrix decomposition[C]. The 22nd International Conference on Digital Signal Processing, London, UK, 2017: 1–4. OTTERSTEN B, STOICA P, and ROY R. Covariance matching estimation techniques for array signal processing applications[J]. Digital Signal Processing, 1998, 8(3): 185–210. doi: 10.1006/dspr.1998.0316 HORN R A and JOHNSON C R. Matrix Analysis[M]. Cambridge, UK: Cambridge University Press, 1985: 1-162. ARLOT S and CELISSE A. A survey of cross-validation procedures for model selection[J]. Statistics Surveys, 2010, 4: 40–79. doi: 10.1214/09-SS054 DAS A. Theoretical and experimental comparison of off-grid sparse Bayesian direction-of-arrival estimation algorithms[J]. IEEE Access, 2017, 5: 18075–18087. doi: 10.1109/ACCESS.2017.2747153 -