一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

地磁背景下基于傳感器陣列的磁偶極子目標跟蹤方法

陳路昭 馮永強 郭瑞杰 朱萬華 方廣有

陳路昭, 馮永強, 郭瑞杰, 朱萬華, 方廣有. 地磁背景下基于傳感器陣列的磁偶極子目標跟蹤方法[J]. 電子與信息學(xué)報, 2020, 42(3): 573-581. doi: 10.11999/JEIT190236
引用本文: 陳路昭, 馮永強, 郭瑞杰, 朱萬華, 方廣有. 地磁背景下基于傳感器陣列的磁偶極子目標跟蹤方法[J]. 電子與信息學(xué)報, 2020, 42(3): 573-581. doi: 10.11999/JEIT190236
Luzhao CHEN, Yongqiang FENG, Ruijie GUO, Wanhua ZHU, Guangyou FANG. Magnetic Dipole Object Tracking Algorithm Based on Magnetometer Array in Geomagnetic Background[J]. Journal of Electronics & Information Technology, 2020, 42(3): 573-581. doi: 10.11999/JEIT190236
Citation: Luzhao CHEN, Yongqiang FENG, Ruijie GUO, Wanhua ZHU, Guangyou FANG. Magnetic Dipole Object Tracking Algorithm Based on Magnetometer Array in Geomagnetic Background[J]. Journal of Electronics & Information Technology, 2020, 42(3): 573-581. doi: 10.11999/JEIT190236

地磁背景下基于傳感器陣列的磁偶極子目標跟蹤方法

doi: 10.11999/JEIT190236
基金項目: 國家自然科學(xué)基金青年基金(41704177)和國家重點研發(fā)計劃“深地資源勘查開采”重點專項(2018YFC0603201)
詳細信息
    作者簡介:

    陳路昭:男,1992年生,博士,研究方向為傳感器陣列的磁信號處理方法、運動平臺磁干擾補償技術(shù)

    馮永強:男,1985年生,博士生,研究方向為航磁系統(tǒng)硬件設(shè)計與航磁數(shù)據(jù)處理方法

    郭瑞杰:女,1992年生,碩士,研究方向為組合導(dǎo)航與系統(tǒng)控制技術(shù)

    朱萬華:男,1982年生,副研究員,主要研究方向為高靈敏度磁場傳感器關(guān)鍵技術(shù)、高性能磁屏蔽關(guān)鍵技術(shù)

    方廣有:男,1963年生,研究員,主要研究方向為超寬帶電磁場理論及工程應(yīng)用、超寬帶雷達成像技術(shù)、微波成像新方法和新技術(shù)

    通訊作者:

    朱萬華 whzhu@mail.ie.ac.cn

  • 中圖分類號: O411.5; TN911.73

Magnetic Dipole Object Tracking Algorithm Based on Magnetometer Array in Geomagnetic Background

Funds: The Youth Program of National Natural Science Foundation of China (41704177), The National Key R&D Program of China (2018YFC0603201)
  • 摘要:

    針對地磁背景下磁偶極子目標跟蹤過程中存在的地磁干擾與模型非線性的問題,該文提出一種基于差量磁異常的蒙特卡洛卡爾曼濾波(MCKF)跟蹤方法。新的跟蹤方法以傳感器陣列測量磁場的差量作為觀測信號,并利用蒙特卡洛卡爾曼濾波算法解決模型的非線性問題,實現(xiàn)磁偶極子目標的實時跟蹤。通過仿真跟蹤實驗,結(jié)果表明該文算法較傳統(tǒng)的擴展或無跡卡爾曼濾波算法在穩(wěn)定跟蹤過程中對目標特征參數(shù)的估計更精確;通過地磁背景跟蹤實驗,結(jié)果驗證了該文算法較傳統(tǒng)算法在低信噪比下的性能優(yōu)勢。

  • 圖  1  仿真磁偶極子運動軌跡與傳感器分布位置

    圖  2  傳感器測量結(jié)果

    圖  3  基于MCKF跟蹤算法的流程圖

    圖  4  仿真磁偶極子跟蹤結(jié)果對比

    圖  5  真實目標跟蹤實驗

    圖  6  跟蹤實驗?zāi)M磁性目標體

    圖  7  陣列傳感器測量磁場與差量磁場

    圖  8  模擬磁性目標的位置跟蹤結(jié)果

    圖  9  模擬磁性目標的磁矩跟蹤結(jié)果

    表  1  不同跟蹤算法各方向投影軌跡跟蹤誤差(m)

    跟蹤算法時間區(qū)間
    1~40點41~80點81~120點120~160點160~200點
    x方向EKF0.06510.01270.00230.00570.0409
    UKF0.06890.01270.00240.00570.0410
    MCKF0.21430.01530.00240.00390.0218
    y方向EKF0.04910.01130.00590.01000.0319
    UKF0.05120.01120.00610.00960.0318
    MCKF0.12370.01150.00420.00610.0158
    z方向EKF0.04300.00890.00210.00420.0163
    UKF0.04360.00880.00220.00410.0164
    MCKF0.04560.00860.00220.00430.0198
    下載: 導(dǎo)出CSV

    表  2  不同蒙特卡洛樣本點數(shù)的算法各方向投影軌跡跟蹤誤差(m)

    表2(a) x方向
    蒙特卡洛樣本點數(shù)時間區(qū)間
    1~4041~8081~120120~160160~200
    500.28170.02420.00350.00520.0264
    1000.24810.01940.00300.00460.0231
    2000.21430.01530.00240.00390.0218
    4000.23160.01590.00230.00390.0212
    表2(b) y方向
    蒙特卡洛樣本點數(shù)時間區(qū)間
    1~4041~8081~120120~160160~200
    500.16580.01680.00490.00690.0192
    1000.14420.01410.00470.00630.0166
    2000.12370.01150.00420.00610.0158
    4000.13460.01180.00430.00590.0151
    表2(c) z方向
    蒙特卡洛樣本點數(shù)時間區(qū)間
    1~4041~8081~120120~160160~200
    500.05690.01240.00310.00530.0242
    1000.04960.01050.00260.00460.0202
    2000.04560.00860.00220.00430.0198
    4000.04660.00900.00210.00420.0195
    下載: 導(dǎo)出CSV
  • IOANNIDIS G. Identification of a ship or submarine from its magnetic signature[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, AES-13(3): 327–329. doi: 10.1109/TAES.1977.308404
    FAGGIONI O, SOLDANI M, GABELLONE A, et al. Undersea harbour defence: A new choice in magnetic networks[J]. Journal of Applied Geophysics, 2010, 72(1): 46–56. doi: 10.1016/j.jappgeo.2010.07.001
    ZHANG Mengying, WANG Hua, GE Lin, et al. Automatic search algorithms for near-field ferromagnetic targets based on magnetic anomaly detection[J]. Mathematical Problems in Engineering, 2018, 2018: 2130236. doi: 10.1155/2018/2130236
    SHEINKER A, LERNER B, SALOMONSKI N, et al. Localization and magnetic moment estimation of a ferromagnetic target by simulated annealing[J]. Measurement Science and Technology, 2007, 18(11): 3451–3457. doi: 10.1088/0957-0233/18/11/027
    SHEINKER A, SALOMONSKI N, GINZBURG B, et al. Remote sensing of a magnetic target utilizing population based incremental learning[J]. Sensors and Actuators A: Physical, 2008, 143(2): 215–223. doi: 10.1016/j.sna.2007.10.064
    YANG Wan’an, HU Chao, LI Mao, et al. A new tracking system for three magnetic objectives[J]. IEEE Transactions on Magnetics, 2010, 46(12): 4023–4029. doi: 10.1109/tmag.2010.2076823
    GAO Xiang, YAN Shenggang, and LI Bi. A novel method of localization for moving objects with an alternating magnetic field[J]. Sensors, 2017, 17(4): 923(1–12). doi: 10.3390/s17040923
    WANG Chen, QU Xiaodong, ZHANG Xiaojuan, et al. A fast calibration method for magnetometer array and the application of ferromagnetic target localization[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1743–1750. doi: 10.1109/TIM.2017.2668558
    賈文抖, 林春生, 陳春行, 等. 針對磁目標定位失效的改進歐拉定位方法[J]. 海軍工程大學(xué)學(xué)報, 2018, 30(3): 37–42.

    JIA Wendou, LIN Chunsheng, CHEN Chunxing, et al. Improved Euler method for preventing failure of positioning magnetic target[J]. Journal of Naval University of Engineering, 2018, 30(3): 37–42.
    WIEGERT R and OESCHGER J. Generalized magnetic gradient contraction based method for detection, localization and discrimination of underwater mines and unexploded ordnance[C]. The OCEANS 2005 MTS/IEEE, Washington, USA, 2005: 1325–1332.
    BIRSAN M. Non-linear Kalman filters for tracking a magnetic dipole[R]. Defence R&D Canada, Atlantic, 2005.
    BIRSAN M. Unscented particle filter for tracking a magnetic dipole target[C]. The OCEANS 2005 MTS/IEEE, Washington, USA, 2005, 1656–1659.
    KOZICK R J and SADLER B M. Algorithms for tracking with an array of magnetic sensors[C]. The 5th IEEE Sensor Array and Multichannel Signal Processing Workshop, Darmstadt, Germany, 2008: 423–427.
    ALHMIEDAT T, ABU TALEB A, and BSOUL M. A study on threads detection and tracking systems for military applications using WSNs[J]. International Journal of Computer Applications, 2012, 40(15): 12–18. doi: 10.5120/5055-7347
    張朝陽, 肖昌漢, 高俊吉, 等. 磁性物體磁偶極子模型適用性的試驗研究[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報, 2010, 18(5): 862–868. doi: 10.3969/j.issn.1005-0930.2010.05.016

    ZHANG Zhaoyang, XIAO Changhan, GAO Junji, et al. Experiment research of magnetic dipole model applicability for a magnetic object[J]. Journal of Basic Science and Engineering, 2010, 18(5): 862–868. doi: 10.3969/j.issn.1005-0930.2010.05.016
    于振濤, 呂俊偉, 張本濤. 基于海底磁力儀陣列的磁性目標定位方法[J]. 武漢理工大學(xué)學(xué)報, 2012, 34(6): 131–135. doi: 10.3963/j.issn.1671-4431.2012.06.028

    YU Zhentao, Lü Junwei, and ZHANG Bentao. A method to localize magnetic target based on a seabed array of magnetometers[J]. Journal of Wuhan University of Technology, 2012, 34(6): 131–135. doi: 10.3963/j.issn.1671-4431.2012.06.028
    吳志東, 周穗華, 陳志毅. 基于非線性濾波算法的磁偶極子跟蹤[J]. 魚雷技術(shù), 2013, 21(4): 262–267. doi: 10.3969/j.issn.1673-1948.2013.04.006

    WU Zhidong, ZHOU Suihua, and CHEN Zhiyi. Magnetic dipole tracking based on nonlinear filtering algorithm[J]. Torpedo Technology, 2013, 21(4): 262–267. doi: 10.3969/j.issn.1673-1948.2013.04.006
    高俊吉, 劉大明, 周國華. 水中非合作運動磁性目標跟蹤及參數(shù)估計[J]. 哈爾濱工程大學(xué)學(xué)報, 2013, 34(9): 1124–1130. doi: 10.3969/j.issn.1006-7043.201209033

    GAO Junji, LIU Daming, and ZHOU Guohua. Study on the tracking and parameter estimating of unknown moving magnetism objects[J]. Journal of Harbin Engineering University, 2013, 34(9): 1124–1130. doi: 10.3969/j.issn.1006-7043.201209033
    張宏欣, 周穗華, 吳志東, 等. 基于改進粗糙化粒子濾波的磁偶極子跟蹤[J]. 華中科技大學(xué)學(xué)報: 自然科學(xué)版, 2014, 42(9): 76–80. doi: 10.13245/j.hust.140917

    ZHANG Hongxin, ZHOU Suihua, WU Zhidong, et al. Magnetic dipole localization based on improved roughening particle filter[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2014, 42(9): 76–80. doi: 10.13245/j.hust.140917
    周穗華, 張文成, 張宏欣. 基于混合卡爾曼濾波的磁偶極子目標跟蹤[J]. 水雷戰(zhàn)與艦船防護, 2015, 23(4): 7–11.

    ZHOU Suihua, ZHANG Wencheng, and ZHANG Hongxin. Magnetic dipole target tracking based on mixed kalman filter[J]. Mine Warfare &Ship Self-defence, 2015, 23(4): 7–11.
    吳垣甫, 孫躍. 基于遞推更新卡爾曼濾波的磁偶極子目標跟蹤[J]. 北京航空航天大學(xué)學(xué)報, 2017, 43(9): 1805–1812. doi: 10.13700/j.bh.1001-5965.2016.0694

    WU Yuanfu and SUN Yue. Magnetic dipole target tracking based on recursive update Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1805–1812. doi: 10.13700/j.bh.1001-5965.2016.0694
    張宏欣, 周穗華, 張伽偉. 磁偶極子跟蹤的漸進貝葉斯濾波方法[J]. 自動化學(xué)報, 2017, 43(5): 822–834. doi: 10.16383/j.aas.2017.c160052

    ZHANG Hongxin, ZHOU Suihua, and ZHANG Jiawei. A progressive bayesian filtering approach to magnetic dipole tracking[J]. Acta Automatica Sinica, 2017, 43(5): 822–834. doi: 10.16383/j.aas.2017.c160052
    張宏欣. 磁性目標跟蹤的多模型自適應(yīng)濾波方法[J]. 數(shù)字海洋與水下攻防, 2018, 1(2): 57–62.

    ZHANG Hongxin. Multiple-model adaptive filtering method for magnetic target tracking[J]. Digital Ocean &Underwater Warfare, 2018, 1(2): 57–62.
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數(shù):  3673
  • HTML全文瀏覽量:  1216
  • PDF下載量:  131
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-04-10
  • 修回日期:  2019-12-01
  • 網(wǎng)絡(luò)出版日期:  2019-12-09
  • 刊出日期:  2020-03-19

目錄

    /

    返回文章
    返回