基于基片集成波導(dǎo)饋電的Ka波段漸變縫隙天線設(shè)計
doi: 10.11999/JEIT190218
-
重慶郵電大學(xué)光電工程學(xué)院 重慶 400065
Design of Ka-band Linear Tapered Slot Antennas Based on Substrate Integrated Waveguide Feed
-
College of Electronics Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
摘要:
在被動毫米波 (PMMW) 成像焦平面陣列 (FPA) 饋源的天線中,直線漸變縫隙天線 (LTSA) 相對于傳統(tǒng)的喇叭天線、介質(zhì)棒天線具有其獨(dú)特的優(yōu)勢。該文優(yōu)化設(shè)計了一種新型的對跖直線漸變縫隙天線 (ALTSA),通過加載超材料結(jié)構(gòu)使天線的增益得到了改善,天線采用基片集成波導(dǎo) (SIW) 技術(shù)進(jìn)行饋電。通過仿真與測試分析,該天線在較寬的頻帶內(nèi)具有良好的阻抗特性、較低的副瓣電平及較高且平穩(wěn)的增益,所設(shè)計的天線具有較小的口徑寬度,在焦平面中易于組成較為密集的饋源陣列,以提高被動毫米波成像的空間分辨率。
-
關(guān)鍵詞:
- 天線 /
- 被動毫米波成像 /
- 對跖直線漸變縫隙天線 /
- 基片集成波導(dǎo)
Abstract:Linear Tapered Slot Antennas (TSA) have significant advantages over traditional horn antennas, dielectric rod antenna when used as feed elements in Focal Plane Arrays (FPA) of Passive MilliMeter Wave(PMMW) imaging. In this paper, a novel Antipodal Linear Tapered Slot Antenna(ALTSA) is designed and optimized. The proposed antenna, the gain of which is improved by loading metamaterial structure, is fed by the Substrate Integrated Waveguide(SIW). Simulation and measure analysis show that the good impedance characteristics, low sidelobe levels, high and smooth gain are all achieved in a wide frequency band. Meanwhile, the designed antenna has a smaller aperture width and is easier to form a denser feed array in the focal plane to improve the spatial resolution of passive millimeter wave imaging.
-
表 1 天線結(jié)構(gòu)尺寸(mm)
L L1 Lm Lt W Wm Wt WSIW 34 12 4 2.8 12 1.7 2.8 5 Wc Wd W1 p d d1 ${p_v}$ ${p_d}$ 0.34 0.34 0.7 1 0.7 1.3 0.15 2 下載: 導(dǎo)出CSV
-
CHENG Yayun, HU Fei, WU Hongfei, et al. Multi-polarization passive millimeter-wave imager and outdoor scene imaging analysis for remote sensing applications[J]. Optics Express, 2018, 26(16): 20145–20159. doi: 10.1364/OE.26.020145 SALMON N A. Outdoor passive millimeter-wave imaging: Phenomenology and scene simulation[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(2): 897–908. doi: 10.1109/TAP.2017.2781742 王楠楠, 邱景輝, 李高飛, 等. Ka頻段介質(zhì)棒天線優(yōu)化設(shè)計[J]. 電波科學(xué)學(xué)報, 2010, 25(1): 161–166.WANG Nannan, QIU Jinghui, LI Gaofei, et al. Optimal design of Ka-band dielectric rod antenna[J]. Chinese Journal of Radio Science, 2010, 25(1): 161–166. 陳其科, 樊勇, 張永鴻, 等. 用于近程被動成像的3 mm波準(zhǔn)光介質(zhì)透鏡天線設(shè)計[J]. 電子科技大學(xué)學(xué)報, 2016, 45(2): 168–173. doi: 10.3969/j.issn.1001-0548.2016.03.002CHEN Qike, FAN Yong, ZHANG Yonghong, et al. Design of quasi-optical lens antenna for 3 mm band near range passive MMW imaging[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(2): 168–173. doi: 10.3969/j.issn.1001-0548.2016.03.002 WANG Nannan, FANG Mu, CHOU H T, et al. Balanced antipodal Vivaldi antenna with asymmetric substrate cutout and dual-scale slotted edges for ultrawideband operation at millimeter-wave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3724–3729. doi: 10.1109/TAP.2018.2820422 王友成, 董明宇, 張鋒, 等. 漸變槽天線端射特性優(yōu)化設(shè)計[J]. 電子與信息學(xué)報, 2017, 39(1): 124–128. doi: 10.11999/JEIT160203WANG Youcheng, DONG Mingyu, ZHANG Feng, et al. Design of tapered-slot antenna with optimized end-fire characteristics[J]. Journal of Electronics &Information Technology, 2017, 39(1): 124–128. doi: 10.11999/JEIT160203 TARINGOU F, DOUSSET D, BORNEMANN J, et al. Broadband CPW feed for millimeter-wave SIW-based antipodal linearly tapered slot antennas[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 1756–1762. doi: 10.1109/tap.2012.2232270 RAO T and TIWARI N. SIW based antipodal linear tapered slot antenna for inter-satellite communication links at 60 GHz[J]. Wireless Personal Communications, 2017, 96(3): 3403–3419. doi: 10.1007/s11277-017-4063-0 MOHAMED I, BRIQECH Z, and SEBAK A. Antipodal fermi tapered slot antenna for 60-GHz band applications[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 96–99. doi: 10.1109/LAWP.2014.2356137 GHASSEMI N and WU Ke. Planar high-gain dielectric-loaded antipodal linearly tapered slot antenna for E- and W-Band gigabyte point-to-point wireless services[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 1747–1755. doi: 10.1109/TAP.2012.2232269 MOOSAZADEH M, KHARKOVSKY S, CASE J T, et al. Improved radiation characteristics of small antipodal Vivaldi antenna for microwave and millimeter-wave imaging applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1961–1964. doi: 10.1109/LAWP.2017.2690441 KUMAR M N and SHANMUGANANTHAM T. Microstrip fed SIW slot antenna backed with cavity for millimeter wireless communication applications[C]. 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications, Bangalore, India, 2017: 1–4. doi: 10.1109/IAIM.2017.8402531. 劉紅喜, 高軍, 曹祥玉, 等. 一種基于開口諧振環(huán)的高增益端射天線設(shè)計[J]. 物理學(xué)報, 2015, 64(23): 234101. doi: 10.7498/aps.64.234101LIU Hongxi, GAO Jun, CAO Xiangyu, et al. A design of high-gain end-fire antenna based on split-ring resonator structures[J]. Acta Physica Sinica, 2015, 64(23): 234101. doi: 10.7498/aps.64.234101 任宇輝, 丁君, 郭陳江. 一種基于開口諧振環(huán)的高增益寬帶雙極化天線設(shè)計[J]. 電子與信息學(xué)報, 2017, 39(11): 2790–2794. doi: 10.11999/JEIT170111REN Yuhui, DING Jun, and GUO Chenjiang. Design of a high-gain wideband dual-polarized antenna based on split ring resonators[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2790–2794. doi: 10.11999/JEIT170111 CUO Linyan, YANG Helin, ZHANG Qisheng, et al. A compact antipodal tapered slot antenna with artificial material lens and reflector for GPR applications[J]. IEEE Access, 2018, 6: 44244–44251. doi: 10.1109/ACCESS.2018.2864618 LI Xiangxiang, ZHOU Hao, GAO Zhiming, et al. Metamaterial slabs covered UWB antipodal Vivaldi antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2943–2946. doi: 10.1109/LAWP.2017.2754860 SZABO Z, PARK G H, HEDGE R, et al. A unique extraction of metamaterial parameters based on kramers-kronig relationship[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(10): 2646–2653. doi: 10.1109/TMTT.2010.2065310 -