基于神經(jīng)網(wǎng)絡(luò)與復合離散混沌系統(tǒng)的雙重加密方法
doi: 10.11999/JEIT190213
-
1.
遼寧工程技術(shù)大學軟件工程學院 葫蘆島 125105
-
2.
中國科學院海西研究院泉州裝備制造研究中心 泉州 362200
Double Encryption Method Based on Neural Network and Composite Discrete Chaotic System
-
1.
School of Software, Liaoning Technical University, Huludao 125105, China
-
2.
Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou 362200, China
-
摘要:
正交頻分復用(OFDM)已被廣泛應(yīng)用于無線通信系統(tǒng),其數(shù)據(jù)傳輸安全具有一定的實際意義。該文提出了一種雙重加密方案,采用神經(jīng)網(wǎng)絡(luò)生成置亂矩陣實現(xiàn)第1次加密,通過基于Logistic映射與Sine映射的復合離散混沌系統(tǒng)產(chǎn)生的混沌序列進行第2次加密。該雙重加密方案極大提升了OFDM通信系統(tǒng)的保密性,可以有效地防止暴力攻擊。相比于單一的1維Logistic映射的混沌系統(tǒng),基于Logistic映射與Sine映射的復合離散混沌系統(tǒng)具有更大的密鑰空間。該文運用Lyapunov指數(shù)與NIST測試驗證了該混沌系統(tǒng)的混沌特性及隨機性,并仿真驗證了雙重加密方案的保密性能。仿真結(jié)果表明,該文所提出的加密方案密鑰空間為4×1093,Lyapunov指數(shù)提高到0.9850,NIST測試中最大P值為0.9995。該雙重加密方案可在不影響傳輸性能下極大提升OFDM通信系統(tǒng)的安全性。
-
關(guān)鍵詞:
- 保密通信 /
- 正交頻分復用 /
- 復合離散混沌系統(tǒng) /
- 神經(jīng)網(wǎng)絡(luò) /
- NIST測試
Abstract:Orthogonal Frequency Division Multiplexing(OFDM) is widely used in wireless communication systems, and its data transmission security has certain practical significance. A double encryption scheme is proposed which enhances the confidentiality of the OFDM communication system and can prevent brute force attacks significantly. Specifically, the first encryption is achieved by using neural network to generate the scrambling matrix, and the second encryption is implemented by chaotic sequence generating by composite discrete chaotic system based on Logistic mapping and Sine mapping. Moreover, it has larger secret key space compared with the single one-dimensional Logistic mapping chaotic system. The performance of double encryption is measured by verifying its chaotic characteristics and randomness (Lyapunov exponent and NIST) as well as its security performance in simulation. The results show that Lyapunov index is increased to 0.9850, and the maximum P-value in the NIST test is 0.9995 by using the proposed double encryption in this paper. It indicates such double encryption significantly improve the confidentiality of the OFDM communication system without affecting the transmission performance.
-
表 1 混沌系統(tǒng)Lyapunov指數(shù)
混沌系統(tǒng) Logistic映射 Sine映射 復合離散混沌系統(tǒng) Lyapunov指數(shù) 0.6118 0.5381 0.9850 下載: 導出CSV
表 2 NIST測試結(jié)果
序號 測試項目 P 值 測試結(jié)果 1 Frequency 0.7188 Success 2 Block Frequency 0.3721 Success 3 Cumulative Sums 0.5153 Success 4 Runs 0.9995 Success 5 Longest Run of Ones 0.6147 Success 6 Rank 0.8624 Success 7 Discrete Fourier Transform 0.9268 Success 8 Nonperiodic Template Matchings 0.9889 Success 9 Overlapping Template Matchings 0.7125 Success 10 Universal Statistical 0.6124 Success 11 Approximate Entropy 0.1522 Success 12 Random Excursions 0.4998 Success 13 Random Excurisions Variant 0.3114 Success 14 Serial 0.2962 Success 15 Linear Complexity 0.9855 Success 下載: 導出CSV
表 3 OFDM系統(tǒng)參數(shù)
特性 參數(shù) 特性 參數(shù) 調(diào)制方式 4QAM FFT點數(shù) 128 數(shù)據(jù)子載波 128 內(nèi)插導頻 4 循環(huán)前綴 4 OFDM符號數(shù) 100 信道類型 AWGN – – 下載: 導出CSV
-
禹思敏, 呂金虎, 李澄清. 混沌密碼及其在多媒體保密通信中應(yīng)用的進展[J]. 電子與信息學報, 2016, 38(3): 735–752. doi: 10.11999/JEIT151356YU Simin, Lü Jinhu, and LI Chengqing. Chaos cipher and its application in multimedia secure communication[J]. Journal of Electronics &Information Technology, 2016, 38(3): 735–752. doi: 10.11999/JEIT151356 ZHANG Wei, ZHANG Chongfu, CHEN Chen, et al. Brownian motion encryption for physical-layer security improvement in CO-OFDM-PON[J]. IEEE Photonics Technology Letters, 2017, 29(12): 1023–1026. doi: 10.1109/LPT.2017.2702159 ZHANG Lijia, XIN Xiangjun, LIU Bo, et al. Physical secure enhancement in optical OFDMA-PON based on two-dimensional scrambling[J]. Optics Express, 2012, 20(26): B32–B37. doi: 10.1364/OE.20.000B32 ZHANG Chongfu, ZHANG Wei, CHEN Chen, et al. Physical-Enhanced secure strategy for OFDMA-PON using chaos and deoxyribonucleic acid encoding[J]. Journal of Lightwave Technology, 2018, 36(9): 1706–1712. doi: 10.1109/JLT.2018.2789435 ZHONG Ju, YANG Xuelin, and HU Weisheng. Performance-Improved secure OFDM transmission using chaotic active constellation extension[J]. IEEE Photonics Technology Letters, 2017, 29(12): 991–994. doi: 10.1109/LPT.2017.2700861 HAJOMER A A E, YANG Xuelin, and HU Weisheng. Chaotic walsh-hadamard transform for physical layer security in OFDM-PON[J]. IEEE Photonics Technology Letters, 2017, 29(6): 527–530. doi: 10.1109/LPT.2017.2663400 ZHANG Lijia, LIU Bo, and XIN Xiangjun. Secure optical generalized filter bank multi-carrier system based on cubic constellation masked method[J]. Optics Letters, 2015, 40(12): 2711–2714. doi: 10.1364/OL.40.002711 ZHANG Wei, ZHANG Chongfu, CHEN Chen, et al. Joint PAPR reduction and physical layer security enhancement in OFDMA-PON[J]. IEEE Photonics Technology Letters, 2016, 28(9): 998–1001. doi: 10.1109/LPT.2016.2522965 ZHANG Wei, ZHANG Chongfu, CHEN Chen, et al. Hybrid chaotic confusion and diffusion for physical layer security in OFDM-PON[J]. IEEE Photonics Journal, 2017, 9(2): 7201010. doi: 10.1109/JPHOT.2017.2683501 臧鴻雁, 黃慧芳, 柴宏玉. 一類2次多項式混沌系統(tǒng)的均勻化方法研究[J]. 電子與信息學報, 2019, 41(7): 1618–1624. doi: 10.11999/JEIT180735ZANG Hongyan, HUANG Huifang, and CHAI Hongyu. Homogenization method for the quadratic polynomial chaotic system[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1618–1624. doi: 10.11999/JEIT180735 ZHANG Wei, ZHANG Chongfu, JIN Wei, et al. Chaos coding-based QAM IQ-Encryption for improved security in OFDMA-PON[J]. IEEE Photonics Technology Letters, 2014, 26(19): 1964–1967. doi: 10.1109/LPT.2014.2343616 MA Ruifeng, DAI Linglong, WANG Zhaocheng, et al. Secure communication in TDS-OFDM system using constellation rotation and noise insertion[J]. IEEE Transactions on Consumer Electronics, 2010, 56(3): 1328–1332. doi: 10.1109/TCE.2010.5606266 LI Hao, WANG Xianbin, and ZOU Yulong. Dynamic subcarrier coordinate interleaving for eavesdropping prevention in OFDM systems[J]. IEEE Communications Letters, 2014, 18(6): 1059–1062. doi: 10.1109/LCOMM.2014.2315648 WANG Huiming, YIN Qinye, and XIA Xianggen. Distributed beamforming for physical-layer security of two-way relay networks[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3532–3545. doi: 10.1109/TSP.2012.2191543 El SHAFIE A, TOURKI K, and AL-DHAHIR N. An artificial-noise-aided hybrid TS/PS scheme for OFDM-Based SWIPT systems[J]. IEEE Communications Letters, 2017, 21(3): 632–635. doi: 10.1109/LCOMM.2016.2642105 DING Zhiguo, LEUNG K K, GOECKEL D L, et al. On the application of cooperative transmission to secrecy communications[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(2): 359–368. doi: 10.1109/JSAC.2012.120215 CHENG M, DENG L, WANG X, et al. Enhanced secure strategy for OFDM-PON system by using hyperchaotic system and fractional fourier transformation[J]. IEEE Photonics Journal, 2014, 6(6): 7903409. doi: 10.1109/JPHOT.2014.2363427 SHEN Zanwei, YANG XueLin, HE Hao, et al. Secure transmission of optical DFT-S-OFDM data encrypted by digital chaos[J]. IEEE Photonics Journal, 2016, 8(3): 7904609. doi: 10.1109/JPHOT.2016.2564438 HU Zhouyi and CHAN C K. A 7-D hyperchaotic system-based encryption scheme for secure Fast-OFDM-PON[J]. Journal of Lightwave Technology, 2018, 36(16): 3373–3381. doi: 10.1109/JLT.2018.2841042 ALVAREZ G and LI Shujun. Some basic cryptographic requirements for chaos-based cryptosystems[J]. International Journal of Bifurcation and Chaos, 2006, 16(8): 2129–2151. doi: 10.1142/S0218127406015970 RUKHIN A, SOTO J, NECHVATAL J, et al. A statistical test suite for Random and pseudorandom number generators for cryptographic applications[R]. Special Publication 800-22 Revision 1a, 2010. IEEE Computer Society. ANSI/IEEE Std 754-1985 IEEE standard for binary floating-point arithmetic[S]. New York: IEEE Computer Society, 1985. -