高分寬幅SAR系統(tǒng)下的方位多通道運動目標成像算法研究
doi: 10.11999/JEIT190211
-
1.
中國科學院電子學研究所 北京 100190
-
2.
中國科學院大學電子電氣與通信工程學院 北京 100049
-
3.
河南大學計算機與信息工程學院 開封 475004
A Moving Target Imaging Approach for the Multichannel in Azimuth High Resolution Wide Swath SAR System
-
1.
Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
-
2.
University of Chinese Academy of Sciences, Beijing 100049, China
-
3.
School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
-
摘要:
在方位多通道SAR系統(tǒng)中,由于運動目標的回波特性和靜止目標的不同,傳統(tǒng)的重構(gòu)濾波器組方法對運動目標的重建是無效的。該文提出一種方位多通道SAR運動目標信號重構(gòu)方法。該方法首先分析了方位多通道SAR系統(tǒng)中運動目標回波特性,并與靜止目標回波形式進行對比,給出了傳統(tǒng)重構(gòu)方法失效的主要原因;通過引入運動目標的徑向速度參數(shù),有效實現(xiàn)了勻速運動目標的頻譜重構(gòu),較好地抑制了方位多通道SAR系統(tǒng)中勻速運動目標的方位模糊。星載仿真實驗結(jié)果驗證了該重構(gòu)方法的有效性。
-
關(guān)鍵詞:
- 合成孔徑雷達 /
- 高分寬幅 /
- 方位多通道 /
- 運動目標重構(gòu)
Abstract:Since the echo characteristics of moving targets are different from that of stationary targets, the traditional reconstruction filter bank algorithm, i.e., the reconstruction filter algorithm, is not applicable. In this paper, a novel reconstruction approach of the moving target for a multichannel in azimuth High-Resolution Wide-Swath (HRWS) Synthetic Aperture Radar (SAR) system is proposed. The approach firstly analyzes the echo characteristics of the moving target for the multi-channel in azimuth SAR system and gives the main reason for the failure of the traditional reconstruction method in contrast to the form of the stationary target echo. By introducing the radial velocity of the moving target, the spectrum reconstruction of the uniform moving target is effectively realized, and the azimuth ambiguities of the uniform moving target for the multi-channel in azimuth SAR system is well suppressed. Space-borne simulated results confirm the effectiveness of the proposed reconstruction approach.
-
表 1 方位多通道星載SAR系統(tǒng)仿真參數(shù)
參數(shù) 取值 場景中心斜距 890 km 衛(wèi)星速度 7474.8 m/s 多普勒帶寬 3737.4 Hz 載頻 9.65 GHz 理想PRF 1495 Hz 實際PRF 1600 Hz 目標速度 5 m/s 下載: 導(dǎo)出CSV
-
MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301 SUESS M, GRAFMUELLER B, and ZAHN R. A novel high resolution, wide swath SAR system[C]. The IEEE 2001 International Geoscience and Remote Sensing Symposium on Scanning the Present and Resolving the Future, Sydney, Australia, 2001: 1013–1015. GEBERT N, KRIEGER G, and MOREIRA A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. doi: 10.1109/TAES.2009.5089542 范懷濤, 張志敏, 李寧. 基于特征分解的方位向多通道SAR相位失配校正方法[J]. 雷達學報, 2018, 7(3): 346–354. doi: 10.12000/JR17012FAN Huaitao, ZHANG Zhimin, and LI Ning. Channel phase mismatch calibration for multichannel in azimuth SAR imaging based on Eigen-structure method[J]. Journal of Radars, 2018, 7(3): 346–354. doi: 10.12000/JR17012 趙慶超, 張毅, 王宇, 等. 基于多幀超分辨率的方位向多通道星載SAR非均勻采樣信號重建方法[J]. 雷達學報, 2017, 6(4): 408–419. doi: 10.12000/JR17035ZHAO Qingchao, ZHANG Yi, WANG R, et al. Signal reconstruction approach for multichannel SAR in azimuth based on multiframe super resolution[J]. Journal of Radars, 2017, 6(4): 408–419. doi: 10.12000/JR17035 KRIEGER G, GEBERT N, and MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. doi: 10.1109/LGRS.2004.832700 PAPOULIS A. Generalized sampling expansion[J]. IEEE Transactions on Circuits and Systems, 1977, 24(11): 652–654. doi: 10.1109/TCS.1977.1084284 LI Zhenfang, WANG Hongyang, SU Tao, et al. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 82–86. doi: 10.1109/LGRS.2004.840610 郭振永, 袁新哲, 張平. 一種多通道SAR高分辨率寬測繪帶成像算法[J]. 電子與信息學報, 2008, 30(2): 310–313. doi: 10.3724/SP.J.1146.2006.00986GUO Zhenyong, YUAN Xinzhe, and ZHANG Ping. An algorithm of multichannel SAR high-resolution and wide-swath imaging[J]. Journal of Electronics &Information Technology, 2008, 30(2): 310–313. doi: 10.3724/SP.J.1146.2006.00986 PERRY R P, DIPIETRO R C, and FANTE R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188–200. doi: 10.1109/7.745691 MARQUES P A C and BIOUCAS DIAS J M. Moving targets processing in SAR spatial domain[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 864–874. doi: 10.1109/taes.2007.4383579 BARBAROSSA S and FARINA A. Space-time-frequency processing of synthetic aperture radar signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2): 341–358. doi: 10.1109/7.272259 BAUMGARTNER S V and KRIEGER G. Simultaneous high-resolution wide-swath SAR imaging and ground moving target indication: Processing approaches and system concepts[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 5015–5029. doi: 10.1109/JSTARS.2015.2450019 WANG Xiangyu, WANG R, LI Ning, et al. A method of estimating the velocity of moving targets for use in high-resolution wide-swath SAR imaging[J]. Remote Sensing Letters, 2018, 9(4): 305–313. doi: 10.1080/2150704X.2017.1420263 -