近天底干涉SAR動態(tài)海面高程測量誤差分析
doi: 10.11999/JEIT190191
-
1.
中國科學(xué)院微電子研究所 北京 100029
-
2.
中國科學(xué)院大學(xué) 北京 100029
-
3.
中山大學(xué)電子與通信工程學(xué)院 廣州 510275
Error Analysis of Dynamic Sea Surface Height Measurement by Near-nadir Interferometric SAR
-
1.
Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
-
2.
University of Chinese Academy of Sciences, Beijing 100029, China
-
3.
School of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou 510275, China
-
摘要:
采用近天底的寬刈幅干涉高度計是近年來新發(fā)展的海面高程測量技術(shù),與陸地高程測量不同,海浪一直處于隨機運動之中,其動態(tài)特性會在合成孔徑雷達(dá)(SAR)成像和干涉處理中引入顯著誤差。對于厘米級的干涉測量精度要求來說,該誤差是主要誤差源之一。該文研究了由海面特性引起的高程誤差機理及其對于近天底干涉SAR測高精度的影響,建立了運動誤差理論模型,同時考慮了電磁偏差與疊掩偏差影響?;诓煌琒AR工作體制,在不同海況下進(jìn)行了理論近似仿真,并進(jìn)行了干涉SAR全鏈路仿真,全鏈路仿真結(jié)果能夠與理論仿真較好地吻合,驗證了誤差模型的正確。結(jié)果顯示由海浪引起的誤差隨著多普勒中心頻率近似呈線性變化,且與目標(biāo)散射加權(quán)徑向速度成正比。誤差不僅與海浪特性相關(guān),還與雷達(dá)系統(tǒng)參數(shù)相關(guān),這能為未來系統(tǒng)設(shè)計、誤差預(yù)算和海面高程處理提供參考。
-
關(guān)鍵詞:
- 干涉SAR /
- 海面高程 /
- 誤差預(yù)算 /
- 目標(biāo)運動
Abstract:The wide-swath interferometric altimeter working at near-nadir is a newly developed ocean surface topography measurement technology in recent years. Different from land elevation measurement, for the dynamic ocean surface waves, they move randomly all the time and this brings bias in Synthetic Aperture Radar (SAR) imaging and interferometric processes and leads to the final height measurement errors. For the requirement of centimeter-level precision, this error is the main source of measurement errors. The errors due to the characteristics of ocean surface and their impact on near-nadir InSAR’s precision are investigated. The motion error theoretical model is established combining the characteristics of the ocean surface and InSAR working mechanism, and the electromagnetic bias and layover bias are also taken into consideration. The error models in different SAR modes under various sea states are simulated. The error model is validated by the interferometric SAR full-link experimental simulation and the simulation results are consistent with the theoretical values. The results show that the errors are approximately linear changing with the Doppler centroid frequency and are proportional to the radial velocity of targets modulated by scattering. The errors are not only related to the characteristics of the waves, but also related to system parameters. This work can provide the feasible suggestions for future system design, error budget and data processing.
-
Key words:
- InSAR /
- Sea surface height /
- Error budget /
- Targets motion
-
表 1 理論仿真系統(tǒng)參數(shù)
仿真系統(tǒng)參數(shù) 參數(shù)值 平臺高度 800 km 基線 10 m 中心頻率 Ka波段 極化方式 HH 入射角 4°~4.7° 距離采樣率 0.8 m 方位采樣率 5 m 距離分辨率 1 m 方位分辨率 50 m 下載: 導(dǎo)出CSV
表 4 實驗驗證系統(tǒng)參數(shù)
實驗系統(tǒng)參數(shù) 參數(shù)值 平臺高度 852 km 基線 12 m 中心頻率 Ka波段 極化方式 HH 入射角 9°~12° 帶寬 65 MHz 脈沖重復(fù)頻率 3005 Hz 距離分辨率 3 m 方位分辨率 15 m 下載: 導(dǎo)出CSV
-
FU L L and CAZENAVE A. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications[M]. San Diego: Academic Press, 2001: 11–12. ZAWADZKI L and ABLAIN M. Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a[J]. Ocean Science, 2016, 12(1): 9–18. doi: 10.5194/os-12-9-2016 VAZE P, KAKI S, LIMONADI D, et al. The surface water and ocean topography mission[C]. 2018 IEEE Aerospace Conference, Big Sky, USA, 2018: 1–9. doi: 10.1109/AERO.2018.8396504. FJ?RTOFT R, GAUDIN J M, POURTHIé N, et al. KaRIn on SWOT: Characteristics of near-nadir Ka-band interferometric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2172–2185. doi: 10.1109/TGRS.2013.2258402 ESTEBAN F D, POLLARD B V P, and ABELSON R. SWOT project mission performance and error budget[R]. JPL, NASA, 2017. ZHANG Yunhua, SHI Xiaojin, WANG Hongjian, et al. Interferometric imaging radar altimeter on board Chinese Tiangong-2 Space Laboratory[C]. 2018 Asia-Pacific Microwave Conference, Kyoto, Japan, 2018: 851–853. doi: 10.23919/APMC.2018.8617189. KONG Weiya, CHONG Jinsong, and TAN Hong. Performance analysis of ocean surface topography altimetry by Ku-band near-nadir interferometric SAR[J]. Remote Sensing, 2017, 9(9): 933–947. doi: 10.3390/rs9090933 PERAL E, RODRíGUEZ E, and ESTEBAN-FERNáNDEZ D. Impact of surface waves on SWOT’s projected ocean accuracy[J]. Remote Sensing, 2015, 7(11): 14509–14529. doi: 10.3390/rs71114509 ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333–382. doi: 10.1109/5.838084 PIRES N, FERNANDES M J, GOMMENGINGER C, et al. Improved sea state bias estimation for altimeter reference missions with altimeter-only three-parameter models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1448–1462. doi: 10.1109/tgrs.2018.2866773 DUBOIS P and CHAPRON B. Characterization of the ocean waves signature to assess the Sea State Bias in wide-swath interferometric altimetry[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 3789–3792. doi: 10.1109/IGARSS.2018.8518813. CHEN Yao, WANG Xiaoqing, HUANG Mo, et al. Analysis of the sea state bias in interferometric radar altimeter[C]. 2018 China International SAR Symposium, Shanghai, China, 2018: 1–7. doi: 10.1109/SARS.2018.8551968. PERRY R P, DIPIETRO R C, and FANTE R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188–200. doi: 10.1109/7.745691 ROMEISER R, ALPERS W, and WISMANN V. An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data[J]. Journal of Geophysical Research: Oceans, 1997, 102(C11): 25237–25250. doi: 10.1029/97jc00190 APEL J R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter[J]. Journal of Geophysical Research: Oceans, 1994, 99(C8): 16269–16291. doi: 10.1029/94jc00846 余穎, 王小青, 朱敏慧, 等. 基于二階散射的海面三尺度雷達(dá)后向散射模型[J]. 電子學(xué)報, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022YU Ying, WANG Xiaoqing, ZHU Minhui, et al. Three-scale radar backscattering model of the ocean surface based on second-order scattering[J]. Acta Electronica Sinica, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022 MANCON S, GUARNIERI A M, GIUDICI D, et al. On the phase calibration by multisquint analysis in TOPSAR and stripmap interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 134–147. doi: 10.1109/TGRS.2016.2598686 -