無線傳感網(wǎng)絡(luò)量化及能量優(yōu)化策略
doi: 10.11999/JEIT190185
-
1.
井岡山大學(xué)電子與信息工程學(xué)院 吉安 343009
-
2.
流域生態(tài)與地理環(huán)境監(jiān)測國家測繪地理信息局重點(diǎn)實(shí)驗(yàn)室 吉安 343009
Quantization and Energy Optimization Strategy of Wireless Sensor Networks
-
1.
Faculty of Electronics and Information Engineering, Jing Gang Shan University, Ji’an 343009, China
-
2.
Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, National Administration of Surveying, Mapping and Geoinformation, Ji’an 343009, China
-
摘要:
由于無線傳感網(wǎng)絡(luò)(WSN)存在能量和帶寬的限制,在網(wǎng)絡(luò)中直接傳送模擬信號受到了極大地制約,因此對模擬信號量化是節(jié)省網(wǎng)絡(luò)能量和保證有效帶寬的重要手段。為此,該文以融合中心的重構(gòu)絕對均值誤差最小為原則,設(shè)計(jì)一種網(wǎng)絡(luò)量化及能量優(yōu)化方法。首先,針對單傳感器,在能量固定的情況下推導(dǎo)了最優(yōu)量化位數(shù)及在量化位數(shù)固定的情況下推導(dǎo)了最優(yōu)能量分配。其次,在單傳感器的基礎(chǔ)上,進(jìn)一步推導(dǎo)多傳感器情況下最優(yōu)量化位數(shù)及最優(yōu)能量分配。以上兩種情況都考慮了傳感器測量噪聲及信道衰落損耗。最后,通過數(shù)值仿真方法驗(yàn)證了文中所提方法的正確性,并將其與等能量分配進(jìn)行了比較,獲得了較好的效果。
-
關(guān)鍵詞:
- 無線傳感網(wǎng)絡(luò) /
- 最優(yōu)能量分配 /
- 量化 /
- 分蔟
Abstract:Due to the limitation of energy and bandwidth in Wireless Sensor Networks(WSN), the direct transmission of analog signals in the network is greatly restricted. Therefore, quantization of analog signals is an important means to save network energy and ensure effective bandwidth. To this end, based on the principle of minimum absolute mean reconstruction error a network quantization and energy optimization method is designed in this paper. Firstly, for single sensor, the optimal quantization bit number is derived under the condition of fixed energy and the optimal energy distribution is derived under the condition of fixed quantization bit number. Secondly, on the basis of single sensor, the optimal quantization bit number and optimal energy allocation are further deduced in multi-sensor case. In both cases, the sensor measurement noise and channel fading loss are considered. Finally, the numerical simulation results show that the proposed method is correct and better than the equal energy distribution.
-
Key words:
- Wireless Sensor Networks(WSN) /
- Optimal power allocating /
- Quantization /
- Cluster-based
-
劉偉, 杜佳鴻, 賈素玲, 等. 能量有效的無線傳感器網(wǎng)絡(luò)分簇路由協(xié)議[J]. 北京航空航天大學(xué)學(xué)報(bào), 2019, 45(1): 50–56. doi: 10.13700/j.bh.1001-5965.2018.0251LIU Wei, DU Jiahong, JIA Suling, et al. Energy efficient clustering routing protocol for wireless sensor networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 50–56. doi: 10.13700/j.bh.1001-5965.2018.0251 ALVI A N, BOUK S H, AHMED S H, et al. BEST-MAC: Bitmap-assisted efficient and scalable TDMA-based WSN MAC protocol for smart cities[J]. IEEE Access, 2016, 4: 312–322. doi: 10.1109/ACCESS.2016.2515096 QUINTERO V, PEREZ A, ESTEVEZ C, et al. State-of-charge estimation to improve decision making by MAC protocols used in WSNs[J]. Electronics Letters, 2019, 55(3): 161–163. doi: 10.1049/el.2018.7666 張聚偉, 王宇, 楊挺. 基于數(shù)據(jù)融合的有向傳感器網(wǎng)絡(luò)全覆蓋部署[J]. 傳感技術(shù)學(xué)報(bào), 2017, 30(1): 139–145. doi: 10.3969/j.issn.1004-1699.2017.01.025ZHANG Juwei, WANG Yu, and YANG Ting. Full coverage deployment algorithm of directional sensor network based on data fusion[J]. Chinese Journal of Sensors and Actuators, 2017, 30(1): 139–145. doi: 10.3969/j.issn.1004-1699.2017.01.025 ZHANG Senlin, CHEN Huayan, LIU Meiqin, et al. Optimal quantization scheme for data-efficient target tracking via UWSNs using quantized measurements[J]. Sensors, 2017, 17(11): 2565–2584. doi: 10.3390/s17112565 ZHANG Linxia, NIU Dunbiao, SONG Enbin, et al. Joint optimization of dimension assignment and compression in distributed estimation fusion[J]. IEEE Transactions on Signal Processing, 2019, 67(9): 2453–2468. doi: 10.1109/TSP.2019.2904935 CHEN Bo, ZHANG Wenan, and YU Li. Distributed finite-horizon fusion Kalman filtering for bandwidth and energy constrained wireless sensor networks[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 797–812. doi: 10.1109/tsp.2013.2294603 GUO Xiaoxi, LEONG A S, and DEY S. Estimation in wireless sensor networks with security constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 544–561. doi: 10.1109/TAES.2017.2649178 郭黎利, 高飛, 孫志國. 無線傳感器網(wǎng)絡(luò)中基于多比特量化的極大似然分布式估計(jì)方法[J]. 電子學(xué)報(bào), 2016, 44(11): 2773–2779. doi: 10.3969/j.issn.0372-2112.2016.11.029GUO Lili, GAO Fei, and SUN Zhiguo. Multi-level quantization scheme for distributed maximum likelihood estimation in wireless sensor networks[J]. Acta Electronica Sinica, 2016, 44(11): 2773–2779. doi: 10.3969/j.issn.0372-2112.2016.11.029 王瑛, 鄒芳, 王飛雪, 等. 多次觀測信號檢測的最優(yōu)量化[J]. 電子學(xué)報(bào), 2008, 36(3): 575–580. doi: 10.3321/j.issn:0372-2112.2008.03.032WANG Ying, ZOU Fang, WANG Feixue, et al. Optimum quantization for multi-observation signal detection[J]. Acta Electronica Sinica, 2008, 36(3): 575–580. doi: 10.3321/j.issn:0372-2112.2008.03.032 BLUM R S. Asymptotically optimum quantization with time invariant breakpoints for signal detection[J]. IEEE Transactions on Information Theory, 1991, 37(2): 402–407. doi: 10.1109/18.75265 ZHOU Yan, LI Jianxun, and WANG Dongli. Target tracking in wireless sensor networks using adaptive measurement quantization[J]. Science China Information Sciences, 2012, 55(4): 827–838. doi: 10.1007/s11432-011-4327-3 LEE J. Optimal power allocating for correlated data fusion in decentralized WSNs using algorithms based on swarm intelligence[J]. Wireless Networks, 2017, 23(5): 1655–1667. doi: 10.1007/s11276-017-1454-9 MOHAJERZADEH A H, YAGHMAEE M H, and FAKOOR V. Total data collection algorithm based on estimation model for wireless sensor network[J]. Wireless Personal Communications, 2015, 81(2): 745–778. doi: 10.1007/s11277-014-2156-6 LEE E A and MESSERSCHMITT D G. Digital Communication[M]. Boston: Kluwer Academic, 1988. KAY S M. Fundamentals of Statistical Signal Processing, Volume Ⅲ: Practical Algorithm Development[M]. Englewood Cliffs: Prentice Hall, 2013: 415–416. SRIPAD A and SNYDER D. A necessary and sufficient condition for quantization errors to be uniform and white[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1977, 25(5): 442–448. doi: 10.1109/TASSP.1977.1162977 -