一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一種適用于小樣本的迭代多重信號(hào)分類(lèi)算法

王娟 王彤 吳建新

王娟, 王彤, 吳建新. 一種適用于小樣本的迭代多重信號(hào)分類(lèi)算法[J]. 電子與信息學(xué)報(bào), 2020, 42(2): 445-451. doi: 10.11999/JEIT190160
引用本文: 王娟, 王彤, 吳建新. 一種適用于小樣本的迭代多重信號(hào)分類(lèi)算法[J]. 電子與信息學(xué)報(bào), 2020, 42(2): 445-451. doi: 10.11999/JEIT190160
Juan WANG, Tong WANG, Jianxin WU. Iterative Multiple Signal Classification Algorithm with Small Sample Size[J]. Journal of Electronics & Information Technology, 2020, 42(2): 445-451. doi: 10.11999/JEIT190160
Citation: Juan WANG, Tong WANG, Jianxin WU. Iterative Multiple Signal Classification Algorithm with Small Sample Size[J]. Journal of Electronics & Information Technology, 2020, 42(2): 445-451. doi: 10.11999/JEIT190160

一種適用于小樣本的迭代多重信號(hào)分類(lèi)算法

doi: 10.11999/JEIT190160
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61471285)
詳細(xì)信息
    作者簡(jiǎn)介:

    王娟:女,1987年生,博士生,研究方向?yàn)殛嚵行盘?hào)處理、空時(shí)自適應(yīng)處理、廣域GMTI

    王彤:男,1974年生,教授,研究方向?yàn)楹铣煽讖嚼走_(dá)成像、機(jī)載雷達(dá)運(yùn)動(dòng)目標(biāo)檢測(cè)

    吳建新:男,1982年生,副教授,研究方向?yàn)殛嚵行盘?hào)處理、自適應(yīng)信號(hào)處理、空時(shí)自適應(yīng)處理

    通訊作者:

    王彤 twang@mail.xidian.edu.cn

  • 中圖分類(lèi)號(hào): TN959.73

Iterative Multiple Signal Classification Algorithm with Small Sample Size

Funds: The National Natural Science Foundation of China (61471285)
  • 摘要:

    當(dāng)樣本數(shù)不足時(shí),由采樣協(xié)方差矩陣特征分解得到的噪聲子空間偏離其真實(shí)值,使得多重信號(hào)分類(lèi)(MUSIC)算法目標(biāo)角度(DOA)估計(jì)性能下降。為了解決這個(gè)問(wèn)題,該文提出了一種迭代算法通過(guò)校正信號(hào)子空間來(lái)提高M(jìn)USIC算法性能。該方法首先利用采樣協(xié)方差矩陣特征分解得到的噪聲子空間粗略估計(jì)目標(biāo)角度;其次基于信源的稀疏性和導(dǎo)向矢量的低秩特性,由上一步得到的目標(biāo)角度以及其鄰域角度對(duì)應(yīng)的導(dǎo)向矢量構(gòu)造一個(gè)新的信號(hào)子空間;最后通過(guò)解一個(gè)優(yōu)化問(wèn)題來(lái)校正信號(hào)子空間。仿真結(jié)果表明,該算法有效地提高了子空間估計(jì)精度?;谛碌男盘?hào)子空間實(shí)現(xiàn)MUSIC DOA估計(jì)可以使得性能得到改善,且在低樣本數(shù)下改善尤為明顯。

  • 圖  1  信號(hào)子空間的估計(jì)精度隨著角度誤差變化曲線,SNR=5 dB, $L = N$

    圖  2  信號(hào)子空間的估計(jì)精度

    圖  3  目標(biāo)分辨率

    圖  4  RMSE

  • 閆鋒剛, 劉秋晨, 邵多, 等. 基于譜分解的降階求根MUSIC算法[J]. 電子與信息學(xué)報(bào), 2017, 39(10): 2421–2427. doi: 10.11999/JEIT170024

    YAN Fenggang, LIU Qiuchen, SHAO Duo, et al. Reduced-dimension Root-MUSIC algorithm based on spectral factorization[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2421–2427. doi: 10.11999/JEIT170024
    文才, 吳建新, 王彤, 等. 波束-多普勒酉ESPRIT多目標(biāo)DOA估計(jì)[J]. 電子與信息學(xué)報(bào), 2018, 40(5): 1136–1143. doi: 10.11999/JEIT170707

    WEN Cai, WU Jianxin, WANG Tong, et al. Multi-target DOA estimation using beam-doppler unitary ESPRIT[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1136–1143. doi: 10.11999/JEIT170707
    BELLILI F, ELGUET C, AMOR S B, et al. Code-aided DOA estimation from turbo-coded QAM transmissions: Analytical CRLBs and maximum likelihood estimator[J]. IEEE Transactions on Wireless Communications, 2017, 16(5): 2850–2865. doi: 10.1109/TWC.2017.2669026
    STOICA P and NEHORAI A. MUSIC, maximum likelihood, and Cramer-Rao bound: Further results and comparisons[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(12): 2140–2150. doi: 10.1109/29.61541
    PILLAI S U and KWON B H. Forward/backward spatial smoothing techniques for coherent signal identification[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(1): 8–15. doi: 10.1109/29.17496
    VASYLYSHYN V. Removing the outliers in root-MUSIC via pseudo-noise resampling and conventional beamformer[J]. Signal Processing, 2013, 93(12): 3423–3429. doi: 10.1016/j.sigpro.2013.05.026
    QIAN Cheng, HUANG Lei, and SO H C. Improved unitary root-MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2): 140–144. doi: 10.1109/LSP.2013.2294676
    VASYLYSHYN V I. DOA estimation using beamspace root-music based estimator bank[C]. The 11th International Conference on Antenna Theory and Techniques, Kiev, Ukraine, 2017: 367–369.
    SHAGHAGHI M and VOROBYOV S A. Subspace leakage analysis and improved DOA estimation with small sample size[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3251–3265. doi: 10.1109/TSP.2015.2422675
    SHAGHAGHI M and VOROBYOV S A. Iterative root-MUSIC algorithm for DOA estimation[C]. The 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, St. Martin, France, 2013: 53–56.
    VINCENT F, PASCAL F, and BESSON O. A bias-compensated MUSIC for small number of samples[J]. Signal Processing, 2017, 138: 117–120. doi: 10.1016/j.sigpro.2017.03.015
    WANG Cheng, TANG Jun, and YANG Bin. Fast and convenient implementation of iterative eigenspace-based beamforming[J]. Electronics Letters, 2015, 51(9): 720–722. doi: 10.1049/el.2015.0131
    YI Shanchao, WU Ying, and WANG Yunlong. Projection-based robust adaptive beamforming with quadratic constraint[J]. Signal Processing, 2016, 122: 65–74. doi: 10.1016/j.sigpro.2015.11.016
    NIE Weike, FENG Dazheng, XIE Hu, et al. Improved MUSIC algorithm for high resolution angle estimation[J]. Signal Processing, 2016, 122: 87–92. doi: 10.1016/j.sigpro.2015.12.002
    WU Jianxin, WANG Tong, and BAO Zheng. Angle estimation for adaptive linear array using PCA-GS-ML estimator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 670–677. doi: 10.1109/TAES.2013.6404132
  • 加載中
圖(4)
計(jì)量
  • 文章訪問(wèn)數(shù):  3380
  • HTML全文瀏覽量:  1604
  • PDF下載量:  109
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-03-18
  • 修回日期:  2019-08-30
  • 網(wǎng)絡(luò)出版日期:  2019-09-04
  • 刊出日期:  2020-02-19

目錄

    /

    返回文章
    返回