一種適用于小樣本的迭代多重信號(hào)分類(lèi)算法
doi: 10.11999/JEIT190160
-
西安電子科技大學(xué)雷達(dá)信號(hào)處理國(guó)家重點(diǎn)實(shí)驗(yàn)室 西安 710071
Iterative Multiple Signal Classification Algorithm with Small Sample Size
-
National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
摘要:
當(dāng)樣本數(shù)不足時(shí),由采樣協(xié)方差矩陣特征分解得到的噪聲子空間偏離其真實(shí)值,使得多重信號(hào)分類(lèi)(MUSIC)算法目標(biāo)角度(DOA)估計(jì)性能下降。為了解決這個(gè)問(wèn)題,該文提出了一種迭代算法通過(guò)校正信號(hào)子空間來(lái)提高M(jìn)USIC算法性能。該方法首先利用采樣協(xié)方差矩陣特征分解得到的噪聲子空間粗略估計(jì)目標(biāo)角度;其次基于信源的稀疏性和導(dǎo)向矢量的低秩特性,由上一步得到的目標(biāo)角度以及其鄰域角度對(duì)應(yīng)的導(dǎo)向矢量構(gòu)造一個(gè)新的信號(hào)子空間;最后通過(guò)解一個(gè)優(yōu)化問(wèn)題來(lái)校正信號(hào)子空間。仿真結(jié)果表明,該算法有效地提高了子空間估計(jì)精度?;谛碌男盘?hào)子空間實(shí)現(xiàn)MUSIC DOA估計(jì)可以使得性能得到改善,且在低樣本數(shù)下改善尤為明顯。
-
關(guān)鍵詞:
- 目標(biāo)角度估計(jì) /
- 多重信號(hào)分類(lèi)算法 /
- 迭代 /
- 優(yōu)化問(wèn)題
Abstract:For cases with small samples, the estimated noise subspace obtained from sample covariance matrix deviates from the true one, which results in MUltiple SIgnal Classification (MUSIC) Direction-Of-Arrival (DOA) estimation performance breakdown. To deal with this problem, an iterative algorithm is proposed to improve the MUSIC performance by modifying the signal subspace in this paper. Firstly, the DOAs are roughly estimated based on the noise subspace obtained from sample covariance matrix. Then, considering the sparsity of signals and the low-rank property of steering matrix, a new signal subspace is got from the steering matrix consisting of estimated DOAs and their adjacent angles. Finally, the signal subspace is modified by solving an optimization problem. Simulation results demonstrate the proposed algorithm can improve the subspace estimation accuracy and furtherly improve the MUSIC DOA estimation performance, especially in small sample cases.
-
閆鋒剛, 劉秋晨, 邵多, 等. 基于譜分解的降階求根MUSIC算法[J]. 電子與信息學(xué)報(bào), 2017, 39(10): 2421–2427. doi: 10.11999/JEIT170024YAN Fenggang, LIU Qiuchen, SHAO Duo, et al. Reduced-dimension Root-MUSIC algorithm based on spectral factorization[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2421–2427. doi: 10.11999/JEIT170024 文才, 吳建新, 王彤, 等. 波束-多普勒酉ESPRIT多目標(biāo)DOA估計(jì)[J]. 電子與信息學(xué)報(bào), 2018, 40(5): 1136–1143. doi: 10.11999/JEIT170707WEN Cai, WU Jianxin, WANG Tong, et al. Multi-target DOA estimation using beam-doppler unitary ESPRIT[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1136–1143. doi: 10.11999/JEIT170707 BELLILI F, ELGUET C, AMOR S B, et al. Code-aided DOA estimation from turbo-coded QAM transmissions: Analytical CRLBs and maximum likelihood estimator[J]. IEEE Transactions on Wireless Communications, 2017, 16(5): 2850–2865. doi: 10.1109/TWC.2017.2669026 STOICA P and NEHORAI A. MUSIC, maximum likelihood, and Cramer-Rao bound: Further results and comparisons[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(12): 2140–2150. doi: 10.1109/29.61541 PILLAI S U and KWON B H. Forward/backward spatial smoothing techniques for coherent signal identification[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(1): 8–15. doi: 10.1109/29.17496 VASYLYSHYN V. Removing the outliers in root-MUSIC via pseudo-noise resampling and conventional beamformer[J]. Signal Processing, 2013, 93(12): 3423–3429. doi: 10.1016/j.sigpro.2013.05.026 QIAN Cheng, HUANG Lei, and SO H C. Improved unitary root-MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2): 140–144. doi: 10.1109/LSP.2013.2294676 VASYLYSHYN V I. DOA estimation using beamspace root-music based estimator bank[C]. The 11th International Conference on Antenna Theory and Techniques, Kiev, Ukraine, 2017: 367–369. SHAGHAGHI M and VOROBYOV S A. Subspace leakage analysis and improved DOA estimation with small sample size[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3251–3265. doi: 10.1109/TSP.2015.2422675 SHAGHAGHI M and VOROBYOV S A. Iterative root-MUSIC algorithm for DOA estimation[C]. The 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, St. Martin, France, 2013: 53–56. VINCENT F, PASCAL F, and BESSON O. A bias-compensated MUSIC for small number of samples[J]. Signal Processing, 2017, 138: 117–120. doi: 10.1016/j.sigpro.2017.03.015 WANG Cheng, TANG Jun, and YANG Bin. Fast and convenient implementation of iterative eigenspace-based beamforming[J]. Electronics Letters, 2015, 51(9): 720–722. doi: 10.1049/el.2015.0131 YI Shanchao, WU Ying, and WANG Yunlong. Projection-based robust adaptive beamforming with quadratic constraint[J]. Signal Processing, 2016, 122: 65–74. doi: 10.1016/j.sigpro.2015.11.016 NIE Weike, FENG Dazheng, XIE Hu, et al. Improved MUSIC algorithm for high resolution angle estimation[J]. Signal Processing, 2016, 122: 87–92. doi: 10.1016/j.sigpro.2015.12.002 WU Jianxin, WANG Tong, and BAO Zheng. Angle estimation for adaptive linear array using PCA-GS-ML estimator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 670–677. doi: 10.1109/TAES.2013.6404132 -