極低信噪比下對(duì)偶序列跳頻信號(hào)的隨機(jī)共振檢測(cè)方法
doi: 10.11999/JEIT190157
-
1.
陸軍工程大學(xué)電子與光學(xué)工程系 ??石家莊 ??050003
-
2.
陸軍工程大學(xué)裝備指揮管理系 ??石家莊 ??050003
-
3.
洛陽(yáng)電子信息裝備試驗(yàn)中心 洛陽(yáng) 471000
Stochastic Resonance Detection Method for the Dual-Sequence Frequency Hopping Signal under Extremely Low Signal-to-Noise Radio
-
1.
Department of Electronics and Optical Engineering, Army Engineering University, Shijiazhuang 050003, China
-
2.
Department of Equipment Command and Management, Army Engineering University, Shijiazhuang 050003, China
-
3.
Luoyang Electronic Equipment Test Center, Luoyang 471000, China
-
摘要: 針對(duì)對(duì)偶序列跳頻(DSHF)在極低信噪比(SNR)下無(wú)法通信的問(wèn)題,該文充分利用對(duì)偶序列跳頻信號(hào)時(shí)、頻域物理特征,提出一種隨機(jī)共振(SR)檢測(cè)方法,極大擴(kuò)展該信號(hào)的應(yīng)用場(chǎng)景。首先,通過(guò)分析對(duì)偶序列跳頻的發(fā)射、接收信號(hào)及超外差解調(diào)的中頻(IF)信號(hào),構(gòu)建隨機(jī)共振系統(tǒng),采用尺度變換調(diào)整中頻信號(hào);然后,引入判決時(shí)刻,將無(wú)定態(tài)解的非自治??似绽士朔匠?FPE)轉(zhuǎn)化為可解的自治方程,從而推導(dǎo)出含時(shí)間參量的概率密度周期定態(tài)解;其次,以最大后驗(yàn)概率為準(zhǔn)則,得到檢測(cè)概率、虛警概率和接收機(jī)工作特性(ROC)曲線;最后,得出以下結(jié)論:(1) 應(yīng)用匹配隨機(jī)共振檢測(cè)對(duì)偶序列跳頻信號(hào)的信噪比最低可達(dá)–18 dB;(2)對(duì)偶序列跳頻與匹配隨機(jī)共振結(jié)合,適用于信噪比在–18~–14 dB的信號(hào)檢測(cè);(3)應(yīng)用匹配隨機(jī)共振檢測(cè)對(duì)偶序列跳頻信號(hào)在信噪比為–14 dB時(shí),檢測(cè)性能提升了25.47%。仿真實(shí)驗(yàn)驗(yàn)證了理論的正確性。
-
關(guān)鍵詞:
- 信號(hào)檢測(cè) /
- 對(duì)偶序列跳頻 /
- 隨機(jī)共振 /
- 檢測(cè)性能
Abstract: Considering the problem that the Dual-Sequence Frequency Hopping (DSFH) can not communicate at extremely low Signal-to-Noise Ratio (SNR), a Stochastic Resonance (SR) detection method is proposed. The SR takes full advantage of the physical characteristics of DSFH signal to improve the detection performance. Firstly, the SR is constructed by analyzing signals of transmission, reception and the Intermediate Frequency (IF). The scale transaction is used to adjust the IF signal to fit the SR. Secondly, the non-autonomous Fokker-Plank Equation (FPE) is transformed into an autonomous equation by introducing the decision time. Therefore, the analytical solution of the probability density function with the parameter of decision time is obtained. Finally, the detection probability, false alarm probability and Receiver Operating Characteristics (ROC) curve are obtained, when the criterion is the Maximum A Posterior probability (MAP). Simulation analysis results show three conclusions: (1) The SNR of DSFH signal can be as low as –18 dB, which uses the matched SR detection. (2) Method for combining DSFH with the matched SR is suitable to detect the signals with SNR of –18 ~–14 dB. (3) In the case of –14 dB SNR, the DFSH signal detection performance increases by 25.47%, when using SR. The proposed method effectiveness is proved with simulation results. -
FITZEK F H P. The medium is the message[C]. 2006 IEEE International Conference on Communications, Istanbul, Turkey, 2006: 5016–5021. ZHOU Xin, KYRITSI P, EGGERS P C F, et al. "The medium is the message": Secure communication via waveform coding in MIMO systems[C]. The 65th Vehicular Technology Conference-VTC2007-Spring, Dublin, Ireland, 2007: 491–495. QUAN Houde, ZHAO Huan, and CUI Peizhang. Anti-jamming frequency hopping system using multiple hopping patterns[J]. Wireless Personal Communications, 2015, 81(3): 1159–1176. doi: 10.1007/s11277-014-2177-1 趙寰, 全厚德, 崔佩璋. 抗跟蹤干擾的多序列跳頻無(wú)線通信系統(tǒng)[J]. 系統(tǒng)工程與電子技術(shù), 2015, 37(3): 671–678. doi: 10.3969/j.issn.1001-506X.2015.03.31ZHAO Huan, QUAN Houde, and CUI Peizhang. Follower-jamming resistible multi-sequence frequency hopping wireless communication[J]. Systems Engineering and Electronics, 2015, 37(3): 671–678. doi: 10.3969/j.issn.1001-506X.2015.03.31 BENZI R, SUTERA A, and VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A: Mathematical and General, 1981, 14(11): L453–L457. doi: 10.1088/0305-4470/14/11/006 張剛, 宋瑩, 張?zhí)祢U. Levy噪聲驅(qū)動(dòng)下指數(shù)型單穩(wěn)系統(tǒng)的隨機(jī)共振特性分析[J]. 電子與信息學(xué)報(bào), 2017, 39(4): 893–900. doi: 10.11999/JEIT160579ZHANG Gang, SONG Ying, and ZHANG Tianqi. Characteristic analysis of exponential type monostable stochastic resonance under levy noise[J]. Journal of Electronics &Information Technology, 2017, 39(4): 893–900. doi: 10.11999/JEIT160579 王珊, 王輔忠. 基于自適應(yīng)隨機(jī)共振理論的太赫茲雷達(dá)信號(hào)檢測(cè)方法[J]. 物理學(xué)報(bào), 2018, 67(16): 160502. doi: 10.7498/aps.67.20172367WANG Shan and WANG Fuzhong. Adaptive stochastic resonance system in Terahertz radar signal detection[J]. Acta Physica Sinica, 2018, 67(16): 160502. doi: 10.7498/aps.67.20172367 KRAUSS P, METZNER C, SCHILLING A, et al. Adaptive stochastic resonance for unknown and variable input signals[J]. Scientific Reports, 2017, 7(1): 2450. doi: 10.1038/s41598-017-02644-w CHEN Hao, VARSHNEY L R, and VARSHNEY P K. Noise-enhanced information systems[J]. Proceedings of the IEEE, 2014, 102(10): 1607–1621. doi: 10.1109/JPROC.2014.2341554 CHEN Hao, VARSHNEY P K, KAY S M, et al. Theory of the stochastic resonance effect in signal detection: Part I—Fixed detectors[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3172–3184. doi: 10.1109/TSP.2007.893757 CHEN Hao and VARSHNEY P K. Theory of the stochastic resonance effect in signal detection—Part II: Variable detectors[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 5031–5041. doi: 10.1109/TSP.2008.928509 ZHANG Gang, ZHANG Yijun, ZHANG Tianqi, et al. Stochastic resonance in second-order underdamped system with exponential Bistable potential for bearing fault diagnosis[J]. IEEE Access, 2018, 6: 42431–42444. doi: 10.1109/ACCESS.2018.2856620 李海霞, 任勇峰, 楊玉華, 等. 跳頻信號(hào)的迭代隨機(jī)共振解調(diào)算法[J]. 系統(tǒng)仿真學(xué)報(bào), 2018, 30(1): 341–347. doi: 10.16182/j.issn1004731x.joss.201801045LI Haixia, REN Yongfeng, YANG Yuhua, et al. Iterative stochastic resonance demodulation algorithm of frequency-hopping signal[J]. Journal of System Simulation, 2018, 30(1): 341–347. doi: 10.16182/j.issn1004731x.joss.201801045 WANG Jun, REN Xin, ZHANG Shaowen, et al. Adaptive bistable stochastic resonance aided spectrum sensing[J]. IEEE Transactions on Wireless Communications, 2014, 13(7): 4014–4024. doi: 10.1109/TWC.2014.2317779 胡崗. 隨機(jī)力與非線性系統(tǒng)[M]. 上海: 上??萍冀逃霭嫔? 1994: 222–232.HU Gang. Stochastic Forces and Nonlinear Systems[M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1994: 222–232. KANG Yanmei. Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems[J]. Physics Letters A, 2016, 380(39): 3160–3166. doi: 10.1016/j.physleta.2016.07.049 IKOTA R. Approximation to a Fokker-Planck equation for the Brownian motor[J]. Physical Review E, 2018, 97(6): 062111. doi: 10.1103/PhysRevE.97.062111. 胡蔦慶. 隨機(jī)共振微弱特征信號(hào)檢測(cè)理論與方法[M]. 北京: 國(guó)防工業(yè)出版社, 2012: 85–86.HU Niaoqing. Theory and Method of Detecting Weak Characteristic Signals of Stochastic Resonance[M]. Beijing: National Defend Industry Press, 2012: 85–86. -