D2D網(wǎng)絡(luò)中信道選擇與功率控制策略研究
doi: 10.11999/JEIT190149
-
1.
吉林大學(xué)通信工程學(xué)院 長(zhǎng)春 130012
-
2.
吉林農(nóng)業(yè)大學(xué)信息技術(shù)學(xué)院 ??長(zhǎng)春 ??130018
Research on Channel Selection and Power Control Strategy for D2D Networks
-
1.
College of Communication Engineering, Jilin University, Changchun 130012, China
-
2.
College of Information & Technology, Jilin Agricultural University, Changchun 130018, China
-
摘要: 針對(duì)D2D通信的資源分配問題,該文研究了D2D信道選擇與功率控制策略。在保證蜂窩用戶服務(wù)質(zhì)量(QoS)的前提下,提出一種基于啟發(fā)式的D2D信道選擇算法,為系統(tǒng)內(nèi)的D2D用戶找到合適的信道復(fù)用資源。同時(shí),利用拉格朗日對(duì)偶方法求解得到D2D用戶最優(yōu)傳輸功率。仿真結(jié)果表明當(dāng)蜂窩用戶與多對(duì)D2D用戶共享信道資源時(shí)能夠大幅度提升系統(tǒng)平均吞吐量。在相同條件下,該算法的性能要明顯優(yōu)于現(xiàn)有算法。
-
關(guān)鍵詞:
- D2D通信 /
- 信道選擇 /
- 功率控制 /
- 拉格朗日對(duì)偶
Abstract: Considering the resource allocation problem for Device-to-Device (D2D) communications, a channel selection and power control strategy for D2D communications is investigated. On the premise of guaranteeing the Quality of Service (QoS) of cellular users, a heuristic based D2D channel selection algorithm is proposed to find the suitable channel reusing resources for D2D users in the system. At the same time, the optimal transmission power of D2D users is obtained by using the Lagrange dual method. Simulation results demonstrate that when the cellular user shares channel resources with multiple pairs of D2D users, the system throughput can be dramatically improved. The performance of this algorithm outperforms the exiting algorithms under the same conditions.-
Key words:
- D2D communications /
- Channel selection /
- Power control /
- Lagrange dual
-
表 1 基于啟發(fā)式思想的DUEs信道選擇算法
(1)初始化:${D_i} = \varnothing ,\forall i \in C$; ${M_i} = D,\forall i \in C$; $\xi _i^j = 0,\forall i \in C,\forall j \in D$;利用式(11)得到所有DUEs 最優(yōu)的發(fā)射功率$P_{j,i}^{{\rmq7j3ldu95} {\rm{opt}}}$,并求解出與之相對(duì) 應(yīng)的$T(P_{j,i}^{{\rmq7j3ldu95} {\rm{opt}}})$值; (2) repeat (3) $({i^ * },{j^*}) = \mathop {\arg \max }\limits_{(i,j):i \in C,j \in {M_i}} T\;(P_{j,i}^{{\rmq7j3ldu95} {\rm{opt}}})$ // 求解得到吞吐量最大值所對(duì)應(yīng)的CUE${i^ * }$與DUE${j^*}$;
(4) if $\left[ {{{{P^{\rm{c}}}g_{{i^*}}^{\rm{c}}} \Biggr/ {\left( {\sigma _0^2 + \sum\limits_{q \in \left\{ {{D_{{i^*}}} \cup {j^*}} \right\}} {P_{q,{i^*}}^{{\rmq7j3ldu95} {\rm{opt}}}g_{q,{i^*}}^{\rmq7j3ldu95}} } \right)}}} \right] \ge {\gamma _{{\rm{th}}}}$ then // 判斷DUE${j^*}$復(fù)用CUE${i^ * }$信道資源時(shí),CUE${i^ * }$的SINR是否滿足系統(tǒng)限制條件, 當(dāng)滿足限制條件時(shí):(5) set $\xi _{{i^*}}^{{j^*}} = 1$; // 將復(fù)用指示因子$\xi _{{i^*}}^{{j^*}}$的值設(shè)置為1; (6) ${M_i} = {M_i}\backslash \left\{ {{j^*}} \right\},\forall i \in C$;${D_{{i^*}}} = {D_{{i^*}}} \cup \left\{ {{j^*}} \right\}$; // 將DUE${j^*}$從集合${M_i}$中刪除, 同時(shí)將DUE${j^*}$加入到復(fù)用CUE${i^ * }$ 信道資源的DUEs集合 ${D_{{i^*}}}$中; (7) else // 當(dāng)不滿足限制條件時(shí): (8) ${M_{{i^*}}} = {M_{{i^*}}}\backslash \left\{ {{j^*}} \right\}$; // 將DUE${j^*}$從集合${M_{{i^*}}}$中刪除; (9) end if (10) until ${M_i} = \varnothing ,\forall i \in C$ // 當(dāng)集合${M_i}$為空集時(shí)停止運(yùn)行; (11) return ${D_i},\forall i \in C$; $\xi _i^j,\forall i \in C,\forall j \in D$. // 輸出集合${D_i}$及復(fù)用指示因子$\xi _i^j$的值。 下載: 導(dǎo)出CSV
表 2 DUEs功率控制算法
(1) 根據(jù)表1對(duì)集合${D_i},\forall i \in C$進(jìn)行初始化; (2) for all $i \in C$ do (3) for all $j \in {D_i}$ do (4) 根據(jù)式(21)—式(23)計(jì)算DUE j傳輸功率$P_{j,i}^{\rmq7j3ldu95}$。 (5) end for (6) end for (7) return $P_{j,i}^d,\forall i \in C,\forall j \in D$. // 輸出DUEs最優(yōu)傳輸功率。 下載: 導(dǎo)出CSV
表 3 仿真參數(shù)
參數(shù) 數(shù)值 CUEs數(shù)量 30, 40 DUEs數(shù)量 25~60 DUEs間通信距離 30~100 (m) CUEs通信路徑損耗 128.1+37.6lg(d(km)) DUEs通信路徑損耗 148+40lg(d(km)) 噪聲譜密度 –114 dBm/Hz DUEs最小吞吐量限制 1.5 Mbps CUEs傳輸功率 24 dBm 下載: 導(dǎo)出CSV
-
BENNIS M, DEBBAH M, and POOR H V. Ultrareliable and low-latency wireless communication: Tail, risk, and scale[J]. Proceedings of the IEEE, 2018, 106(10): 1834–1853. doi: 10.1109/JPROC.2018.2867029 錢志鴻, 閻雙葉, 田春生, 等. LTE-A網(wǎng)絡(luò)中D2D通信的資源分配算法研究[J]. 電子與信息學(xué)報(bào), 2018, 40(10): 2287–2293. doi: 10.11999/JEIT180043QIAN Zhihong, YAN Shuangye, TIAN Chunsheng, et al. Research on resource allocation algorithm for D2D communications underlaying LTE-A networks[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2287–2293. doi: 10.11999/JEIT180043 王練, 王萌, 任治豪, 等. D2D網(wǎng)絡(luò)中基于立即可解網(wǎng)絡(luò)編碼的時(shí)延最小化重傳方案[J]. 電子與信息學(xué)報(bào), 2018, 40(7): 1691–1698. doi: 10.11999/JEIT170976WANG Lian, WANG Meng, REN Zhihao, et al. Delay minimization retransmission scheme based on instantly decodable network coding for D2D communications[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1691–1698. doi: 10.11999/JEIT170976 錢志鴻, 王雪. 面向5G通信網(wǎng)的D2D技術(shù)綜述[J]. 通信學(xué)報(bào), 2016, 37(7): 1–14. doi: 10.11959/j.issn.1000-436x.2016129QIAN Zhihong and WANG Xue. Reviews of D2D technology for 5G communication networks[J]. Journal on Communications, 2016, 37(7): 1–14. doi: 10.11959/j.issn.1000-436x.2016129 XIANG Shangwen, PENG Tao, LIU Ziyang, et al. A distance-dependent mode selection algorithm in heterogeneous D2D and IMT-advanced network[C]. Proceedings of 2012 IEEE Globecom Workshops, Anaheim, USA, 2012: 416–420. doi: 10.1109/GLOCOMW.2012.6477608. WEN Si, ZHU Xiaoyue, LIN Zhesheng, et al. Distributed resource management for device-to-device (D2D) communication underlay cellular networks[C]. The 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, London, UK, 2013: 1624–1628. doi: 10.1109/PIMRC.2013.6666402. LEE D H, CHOI K W, JEON W S, et al. Two-stage semi-distributed resource management for device-to-device communication in cellular networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(4): 1908–1920. doi: 10.1109/TWC.2014.022014.130480 ZHANG Wei, HE Wanbing, WU Dan, et al. Joint mode selection, link allocation and power control in underlaying D2D communication[J]. KSⅡ Transactions on Internet and Information Systems, 2016, 10(11): 5209–5228. doi: 10.3837/tiis.2016.11.001 WANG Xianxian, Lü Shaobo, WANG Xing, et al. Greedy heuristic resource allocation algorithm for device-to-device aided cellular systems with system level simulations[J]. KSⅡ Transactions on Internet and Information Systems, 2018, 12(4): 1415–1435. doi: 10.3837/tiis.2018.04.002 AHMAD M, NAEEM M, IQBAL M, et al. Joint user selection, mode assignment, and power allocation in cognitive radio-assisted D2D networks[J]. IET Communications, 2018, 12(10): 1207–1214. doi: 10.1049/iet-com.2017.1206 XU Jun, GUO Chengcheng, and ZHANG Hao. Joint channel allocation and power control based on PSO for cellular networks with D2D communications[J]. Computer Networks, 2018, 133: 104–119. doi: 10.1016/j.comnet.2018.01.017 GJENDEMSJO A, GESBERT D, OIEN G E, et al. Optimal power allocation and scheduling for two-cell capacity maximization[C]. The 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, Boston, USA, 2006: 1–6. doi: 10.1109/WIOPT.2006.1666517. ESMAT H H, ELMESALAWY M M, and IBRAHIM I I. Joint channel selection and optimal power allocation for multi-cell D2D communications underlaying cellular networks[J]. IET Communications, 2017, 11(5): 746–755. doi: 10.1049/iet-com.2016.0955 UL HASSAN N, YUEN C, SAEED S, et al. Power control for sum-rate maximization on interference channels under sum power constraint[J]. IEEE Transactions on Vehicular Technology, 2015, 64(2): 593–609. doi: 10.1109/TVT.2014.2324289 ITU-R. Guidelines for evaluation of radio interface technologies for IMT-advanced[R]. Report ITU-R M.2135, 2009. DINH-VAN S, SHIN Y, and SHIN O S. Resource allocation and power control based on user grouping for underlay device-to-device communications in cellular networks[J]. Transactions on Emerging Telecommunications Technologies, 2017, 28(1): e2920. doi: 10.1002/ett.2920 -