自適應(yīng)時(shí)頻同步壓縮算法研究
doi: 10.11999/JEIT190146
-
西安電子科技大學(xué)電子工程學(xué)院 西安 710071
Research on the Adaptive Synchrosqueezing Algorithm
-
School of Electronic Engineering, Xidian University, Xi’an 710071, China
-
摘要:
提高時(shí)頻分辨率對(duì)多分量非平穩(wěn)信號(hào)的分析與重建具有至關(guān)重要的作用。傳統(tǒng)的時(shí)頻分析方法由于窗口固定,分析頻率變化較快的信號(hào)時(shí)存在時(shí)頻聚集性不高的問題,無法自適應(yīng)分辨多分量信號(hào)。該文針對(duì)頻率快速變化信號(hào),利用信號(hào)的局部信息特征,提出一種自適應(yīng)的時(shí)頻同步壓縮變換算法。該方法有效提升了已有同步壓縮變換時(shí)頻分辨率,特別適用于頻率接近且快速變換的多分量信號(hào)。同時(shí),利用可分性條件,該文提出利用局部瑞利熵值對(duì)自適應(yīng)窗口參數(shù)進(jìn)行估計(jì)。最后,通過對(duì)合成信號(hào)和實(shí)測(cè)信號(hào)分析,證明了所提方法的可行性,對(duì)分析和重建復(fù)雜非平穩(wěn)信號(hào)具有重要意義。
-
關(guān)鍵詞:
- 信號(hào)處理 /
- 多分量信號(hào) /
- 時(shí)頻分析 /
- 同步壓縮 /
- 自適應(yīng)窗口
Abstract:The improvement of time-frequency resolution plays a crucial role in the analysis and reconstruction of multi-component non-stationary signals. For traditional time-frequency analysis methods with fixed window, the time-frequency concentration is low and hardly to distinguish the multi-component signals with fast-varying frequencies. In this paper, by adopting the local information of the signal, an adaptive synchrosqueezing transform is proposed for the signals with fast-varying frequencies. The proposed method is with high time-frequency resolution, superior to existing synchrosqueezing methods, and particularly suitable for multi-component signals with close and fast-varying frequencies. Meanwhile, by using the separability condition, the adaptive window parameters are estimated by local Rényi entropy. Finally, experiments on synthetic and real signals demonstrate the correctness of the proposed method, which is suitable to analyze and recover complex non-stationary signals.
-
張賢達(dá), 保錚. 非平穩(wěn)信號(hào)分析與處理[M]. 北京: 國(guó)防工業(yè)出版社, 1998: 1–3.ZHANG Xianda and BAO Zheng. Non-stationary Nonlinear Signal Analysis and Processing[M]. Beijing: National Defense Industry Press, 1998: 1–3. COHEN L. Time-frequency Analysis[M]. Englewood Cliffs: Prentice Hall, 1995: 44–195. FLANDRIN P. Time-Frequency/Time-Scale Analysis[M]. Cambridge: Academic Press, 1999: 1–386. DAUBECHIES I, LU Jianfeng, and WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243–261. doi: 10.1016/j.acha.2010.08.002 HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. The Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193 AUGER F and FLANDRIN P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1068–1089. doi: 10.1109/78.382394 OBERLIN T, MEIGNEN S, and PERRIER V. The Fourier-based synchrosqueezing transform[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 315–319. doi: 10.1109/ICASSP.2014.6853609. PHAM D H and MEIGNEN S. High-order synchrosqueezing transform for multicomponent signals analysis—With an application to gravitational-wave signal[J]. IEEE Transactions on Signal Processing, 2017, 65(12): 3168–3178. doi: 10.1109/TSP.2017.2686355 OBERLIN T and MEIGNEN S. The second-order wavelet synchrosqueezing transform[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3994–3998. doi: 10.1109/ICASSP.2017.7952906. WANG Shibin, CHEN Xuefeng, SELESNICK I W, et al. Matching synchrosqueezing transform: A useful tool for characterizing signals with fast varying instantaneous frequency and application to machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 100: 242–288. doi: 10.1016/j.ymssp.2017.07.009 HERRY C L, FRASCH M, SEELY A J, et al. Heart beat classification from single-lead ECG using the synchrosqueezing transform[J]. Physiological Measurement, 2017, 38(2): 171–187. doi: 10.1088/1361-6579/aa5070 HE Kuanfang, LI Qi, and YANG Qing. Characteristic analysis of welding crack acoustic emission signals using synchrosqueezed wavelet transform[J]. Journal of Testing and Evaluation, 2018, 46(6): 2679–2691. doi: 10.1520/JTE20170218 LI Lin, CAI Haiyan, JIANG Qingtang, et al. An empirical signal separation algorithm for multicomponent signals based on linear time-frequency analysis[J]. Mechanical Systems and Signal Processing, 2019, 121: 791–809. doi: 10.1016/j.ymssp.2018.11.037 STANKOVI? L. A measure of some time-frequency distributions concentration[J]. Signal Processing, 2001, 81(3): 621–631. doi: 10.1016/S0165-1684(00)00236-X FUSCUS E. Digitized 2.5 microsecond echolocation pulse emitted by the Large Brown Bat[EB/OL]. https://www.ece. rice.edu/dsp/software/bat.shtml, 2017. -