一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

自適應(yīng)時(shí)頻同步壓縮算法研究

李林 王林 韓紅霞 姬紅兵 江莉

李林, 王林, 韓紅霞, 姬紅兵, 江莉. 自適應(yīng)時(shí)頻同步壓縮算法研究[J]. 電子與信息學(xué)報(bào), 2020, 42(2): 438-444. doi: 10.11999/JEIT190146
引用本文: 李林, 王林, 韓紅霞, 姬紅兵, 江莉. 自適應(yīng)時(shí)頻同步壓縮算法研究[J]. 電子與信息學(xué)報(bào), 2020, 42(2): 438-444. doi: 10.11999/JEIT190146
Lin LI, Lin WANG, Hongxia HAN, Hongbing JI, Li JIANG. Research on the Adaptive Synchrosqueezing Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(2): 438-444. doi: 10.11999/JEIT190146
Citation: Lin LI, Lin WANG, Hongxia HAN, Hongbing JI, Li JIANG. Research on the Adaptive Synchrosqueezing Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(2): 438-444. doi: 10.11999/JEIT190146

自適應(yīng)時(shí)頻同步壓縮算法研究

doi: 10.11999/JEIT190146
基金項(xiàng)目: 國(guó)家自然基金項(xiàng)目(61803294)
詳細(xì)信息
    作者簡(jiǎn)介:

    李林:男,1980年生,博士,副教授,研究方向?yàn)槔走_(dá)信號(hào)處理、信號(hào)檢測(cè)與估值

    王林:女,1995年生,碩士生,研究方向?yàn)榉瞧椒€(wěn)信號(hào)處理

    韓紅霞:1991年生,碩士,研究方向?yàn)榉瞧椒€(wěn)信號(hào)分離與時(shí)頻分析

    姬紅兵:男,1963年生,博士,教授,研究方向?yàn)槔走_(dá)信號(hào)處理、目標(biāo)檢測(cè)與跟蹤

    江莉:1982年生,博士,研究方向?yàn)榉蔷€性系統(tǒng)分析、振動(dòng)信號(hào)處理

    通訊作者:

    李林 lilin@xidian.edu.cn

  • 中圖分類號(hào): TN911.7

Research on the Adaptive Synchrosqueezing Algorithm

Funds: The National Natural Science Foundation of China (61803294)
  • 摘要:

    提高時(shí)頻分辨率對(duì)多分量非平穩(wěn)信號(hào)的分析與重建具有至關(guān)重要的作用。傳統(tǒng)的時(shí)頻分析方法由于窗口固定,分析頻率變化較快的信號(hào)時(shí)存在時(shí)頻聚集性不高的問題,無法自適應(yīng)分辨多分量信號(hào)。該文針對(duì)頻率快速變化信號(hào),利用信號(hào)的局部信息特征,提出一種自適應(yīng)的時(shí)頻同步壓縮變換算法。該方法有效提升了已有同步壓縮變換時(shí)頻分辨率,特別適用于頻率接近且快速變換的多分量信號(hào)。同時(shí),利用可分性條件,該文提出利用局部瑞利熵值對(duì)自適應(yīng)窗口參數(shù)進(jìn)行估計(jì)。最后,通過對(duì)合成信號(hào)和實(shí)測(cè)信號(hào)分析,證明了所提方法的可行性,對(duì)分析和重建復(fù)雜非平穩(wěn)信號(hào)具有重要意義。

  • 圖  1  兩分量線性調(diào)頻信號(hào)的各種時(shí)頻處理結(jié)果圖

    圖  2  兩分量線性調(diào)頻信號(hào)的處理結(jié)果圖

    圖  3  蝙蝠回波信號(hào)的處理結(jié)果圖

    圖  4  雷達(dá)編隊(duì)目標(biāo)信號(hào)的處理結(jié)果圖

  • 張賢達(dá), 保錚. 非平穩(wěn)信號(hào)分析與處理[M]. 北京: 國(guó)防工業(yè)出版社, 1998: 1–3.

    ZHANG Xianda and BAO Zheng. Non-stationary Nonlinear Signal Analysis and Processing[M]. Beijing: National Defense Industry Press, 1998: 1–3.
    COHEN L. Time-frequency Analysis[M]. Englewood Cliffs: Prentice Hall, 1995: 44–195.
    FLANDRIN P. Time-Frequency/Time-Scale Analysis[M]. Cambridge: Academic Press, 1999: 1–386.
    DAUBECHIES I, LU Jianfeng, and WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243–261. doi: 10.1016/j.acha.2010.08.002
    HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. The Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193
    AUGER F and FLANDRIN P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1068–1089. doi: 10.1109/78.382394
    OBERLIN T, MEIGNEN S, and PERRIER V. The Fourier-based synchrosqueezing transform[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 315–319. doi: 10.1109/ICASSP.2014.6853609.
    PHAM D H and MEIGNEN S. High-order synchrosqueezing transform for multicomponent signals analysis—With an application to gravitational-wave signal[J]. IEEE Transactions on Signal Processing, 2017, 65(12): 3168–3178. doi: 10.1109/TSP.2017.2686355
    OBERLIN T and MEIGNEN S. The second-order wavelet synchrosqueezing transform[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3994–3998. doi: 10.1109/ICASSP.2017.7952906.
    WANG Shibin, CHEN Xuefeng, SELESNICK I W, et al. Matching synchrosqueezing transform: A useful tool for characterizing signals with fast varying instantaneous frequency and application to machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 100: 242–288. doi: 10.1016/j.ymssp.2017.07.009
    HERRY C L, FRASCH M, SEELY A J, et al. Heart beat classification from single-lead ECG using the synchrosqueezing transform[J]. Physiological Measurement, 2017, 38(2): 171–187. doi: 10.1088/1361-6579/aa5070
    HE Kuanfang, LI Qi, and YANG Qing. Characteristic analysis of welding crack acoustic emission signals using synchrosqueezed wavelet transform[J]. Journal of Testing and Evaluation, 2018, 46(6): 2679–2691. doi: 10.1520/JTE20170218
    LI Lin, CAI Haiyan, JIANG Qingtang, et al. An empirical signal separation algorithm for multicomponent signals based on linear time-frequency analysis[J]. Mechanical Systems and Signal Processing, 2019, 121: 791–809. doi: 10.1016/j.ymssp.2018.11.037
    STANKOVI? L. A measure of some time-frequency distributions concentration[J]. Signal Processing, 2001, 81(3): 621–631. doi: 10.1016/S0165-1684(00)00236-X
    FUSCUS E. Digitized 2.5 microsecond echolocation pulse emitted by the Large Brown Bat[EB/OL]. https://www.ece. rice.edu/dsp/software/bat.shtml, 2017.
  • 加載中
圖(4)
計(jì)量
  • 文章訪問數(shù):  3336
  • HTML全文瀏覽量:  1578
  • PDF下載量:  139
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-03-13
  • 修回日期:  2019-05-27
  • 網(wǎng)絡(luò)出版日期:  2019-08-23
  • 刊出日期:  2020-02-19

目錄

    /

    返回文章
    返回