雷達(dá)間歇輻射對(duì)測(cè)向交叉定位性能的影響分析
doi: 10.11999/JEIT190110
-
1.
中國(guó)電子科技集團(tuán)公司航空電子信息系統(tǒng)技術(shù)重點(diǎn)實(shí)驗(yàn)室 成都 610036
-
2.
中國(guó)電子科技集團(tuán)公司第十研究所 成都 610036
Analysis for Effect of Radar Intermittent Radiation on the Performance of Cross Location
-
1.
Key Laboratory of Avionic Information System Technology, China Electronics Technology Group Corporation, Chengdu 610036, China
-
2.
The 10th Research Institute of China Electronics Technology Group Corporation, Chengdu 610036, China
-
摘要:
針對(duì)雷達(dá)采取間歇輻射的射頻隱身管控措施,以雙站測(cè)向交叉定位為例,該文研究了輻射時(shí)間比與定位性能的影響關(guān)系。首先分析了雷達(dá)間歇輻射的管控方法,然后在載機(jī)做勻速直線運(yùn)動(dòng)的假設(shè)下,采用克拉美羅下界(CRLB)方法,建立了輻射時(shí)間比對(duì)定位精度的影響模型。最后給出了模型的求解步驟并進(jìn)行了仿真驗(yàn)證。仿真結(jié)果表明,不同輻射時(shí)間比對(duì)定位性能的影響不同,在初始距離為100 km,輻射時(shí)間比小于0.5時(shí),定位收斂時(shí)間超過(guò)10 s,可以有效降低測(cè)向交叉定位的性能。
Abstract:For the radio frequency stealth control measure of radar intermittent radiation, the relationship between radiation time ratio and positioning performance is studied which takes cross location with two stations as an example. Firstly, the control method of radar intermittent radiation is analyzed. Then, under the assumption of uniform linear motion of the carrier aircraft, the influence model of radiation time ratio on positioning accuracy is established by using the Cramer-Rao Lower Bound (CRLB). Finally, the solution steps of the model are given and verified by simulation. The simulation results show that different radiation time ratios have different effects on the location performance. When the initial distance is 100 km and the radiation time ratio is less than 0.5, the location convergence time exceeds 10 s, which can effectively reduce the performance of cross location with two stations.
-
表 1 仿真參數(shù)
參數(shù) 取值 有效輻射功率 110 dBm 發(fā)射頻率 8 GHz 波束寬度 2.2°×2.2° 副瓣電平 –25 dB 初始距離 100 km,70 km 載機(jī)飛行速度 300 m/s 偵察飛機(jī)飛行速度 300 m/s 基線長(zhǎng)度 30 km 測(cè)向精度 0.5° 導(dǎo)航精度 50 m 采樣周期 100 ms 下載: 導(dǎo)出CSV
表 2 不同輻射時(shí)間比對(duì)收斂時(shí)間的影響(s)
輻射時(shí)間比$\beta $ 初始距離100 km 初始距離70 km 1.00 2.1 0.9 0.90 2.2 1.0 0.80 3.3 1.5 0.75 3.8 1.6 0.66 7.4 2.8 0.50 12.2 6.2 0.33 19.0 10.9 0.25 25.3 14.5 0.20 31.6 18.1 0.10 46.5 27.3 下載: 導(dǎo)出CSV
表 3 不同輻射時(shí)間比及時(shí)隙重復(fù)周期下的收斂時(shí)間(s)
$\tau /T$(%) T(s) 0.5 1 2 3 4 100 3.2 3.2 3.2 3.2 3.2 80 4.1 4.1 4.1 3.9 4.2 50 6.8 7.1 6.5 6.6 5.4 40 10.1 9.3 8.6 7.2 8.8 30 20.5 29.2 24.5 15.8 13.0 20 51.5 50.1 48.3 40.8 44.7 下載: 導(dǎo)出CSV
-
PARIKH A, KAMALAPURKAR R, and DIXON W E. Target tracking in the presence of intermittent measurements via motion model learning[J]. IEEE Transactions on Robotics, 2018, 34(3): 805–819. doi: 10.1109/TRO.2018.2821169 YADAV R, DAHIYA P K, and MISHRA R. Comparative analysis of automotive radar sensor for collision detection and warning system[J]. International Journal of Information Technology, 2018(12): 1–6. doi: 10.1007/s41870-018-0167-3 吳巍, 柳毅, 王國(guó)宏, 等. 輻射限制下有源無(wú)源協(xié)同跟蹤技術(shù)[J]. 信息與控制, 2011, 40(3): 418–423. doi: 10.3724/SP.J.1219.2011.00418WU Wei, LIU Yi, WANG Guohong, et al. Active and passive synergy tracking technique with emission constraint[J]. Information and Control, 2011, 40(3): 418–423. doi: 10.3724/SP.J.1219.2011.00418 吳巍, 王國(guó)宏, 李世忠. 雷達(dá)間歇輔助下雷達(dá)紅外協(xié)同跟蹤技術(shù)[J]. 火力與指揮控制, 2012, 37(1): 155–158. doi: 10.3969/j.issn.1002-0640.2012.01.040WU Wei, WANG Guohong, and LI Shizhong. Research on radar and IRST synergistic tracking with radar intermittent assistant[J]. Fire Control &Command Control, 2012, 37(1): 155–158. doi: 10.3969/j.issn.1002-0640.2012.01.040 熊久良, 徐宏, 韓壯志, 等. 基于組網(wǎng)的火控雷達(dá)間歇式目標(biāo)跟蹤技術(shù)研究[J]. 現(xiàn)代雷達(dá), 2011, 33(8): 13–16. doi: 10.3969/j.issn.1004-7859.2011.08.004XIONG Jiuliang, XU Hong, HAN Zhuangzhi, et al. A study on intermittent target tracking technology in fire-control radar network[J]. Modern Radar, 2011, 33(8): 13–16. doi: 10.3969/j.issn.1004-7859.2011.08.004 ZHANG Zhenkai, ZHOU Jianjiang, WANG Fei, et al. Multiple-target tracking with adaptive sampling intervals for phased-array radar[J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 760–766. doi: 10.3969/j.issn.1004-4132.2011.05.006 ZHANG Zhenkai, ZHU Jiehao, TIAN Yubo, et al. Novel sensor selection strategy for LPI based on an improved IMMPF tracking method[J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 1004–1010. doi: 10.1109/jsee.2014.00115 BENOUDNINE H, KECHE M, OUAMRI A, et al. New efficient schemes for adaptive selection of the update time in the IMMJPDAF[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 197–214. doi: 10.1109/taes.2012.6129630 劉學(xué)全, 李波, 萬(wàn)開(kāi)方, 等. 基于多傳感器協(xié)同的雷達(dá)猝發(fā)技術(shù)研究[J]. 中國(guó)民航大學(xué)學(xué)報(bào), 2012, 30(6): 17–20. doi: 10.3969/j.issn.1674-5590.2012.06.005LIU Xuequan, LI Bo, WAN Kaifang, et al. Study on radar burst technology based on multi-sensor synergy[J]. Journal of Civil Aviation University of China, 2012, 30(6): 17–20. doi: 10.3969/j.issn.1674-5590.2012.06.005 ZHOU Biao, SUN Chao, AHN D, et al. A novel passive tracking scheme exploiting geometric and intercept theorems[J]. Sensors, 2018, 18(3): 895. doi: 10.3390/s18030895 張國(guó)凱, 何佳洲, 戴霄. 基于橢球模型的雷達(dá)/ESM聯(lián)合定位算法[J]. 指揮控制與仿真, 2013, 35(5): 30–33. doi: 10.3969/j.issn.1673-3819.2013.05.007ZHANG Guokai, HE Jiazhou, and DAI Xiao. Radar/ESM locating algorithm based on the ellipsoid model of globe[J]. Command Control &Simulation, 2013, 35(5): 30–33. doi: 10.3969/j.issn.1673-3819.2013.05.007 NARYKOV A S and YAROVOY A. Sensor selection algorithm for optimal management of the tracking capability in multisensor radar system[C]. 2013 European Microwave Conference, Nuremberg, Germany, 2013: 1811–1814. 吳衛(wèi)華, 江晶, 高嵐. 機(jī)載雷達(dá)輔助無(wú)源傳感器對(duì)雜波環(huán)境下機(jī)動(dòng)目標(biāo)跟蹤[J]. 控制與決策, 2015, 30(2): 277–282. doi: 10.13195/j.kzyjc.2013.1781WU Weihua, JIANG Jing, and GAO Lan. Tracking maneuvering target in clutter with passive sensor aided by airborne radar[J]. Control and Decision, 2015, 30(2): 277–282. doi: 10.13195/j.kzyjc.2013.1781 YANG Chao, ZHENG Jiangying, REN Xiaoqiang, et al. Multi-sensor Kalman filtering with intermittent measurements[J]. IEEE Transactions on Automatic Control, 2018, 63(3): 797–804. doi: 10.1109/TAC.2017.2734643 HUANG He and WANG Wenqin. FDA-OFDM for integrated navigation, sensing, and communication systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(5/6): 34–42. doi: 10.1109/MAES.2018.170109 汪晗, 成昂軒, 王坤, 等. 無(wú)線傳感器網(wǎng)絡(luò)分布式迭代定位誤差控制算法[J]. 電子與信息學(xué)報(bào), 2018, 40(1): 72–78. doi: 10.11999/JEIT170344WANG Han, CHENG Angxuan, WANG Kun, et al. Error control algorithm of distributed localization in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344 孫仲康, 周一宇, 何黎星. 單多基地有源無(wú)源定位技術(shù)[M]. 北京: 國(guó)防工業(yè)出版社, 1996: 291–294.SUN Zhongkang, ZHOU Yiyu, and HE Lixing. Active and Passive Location Technology by Single and Multiple Platforms[M]. Beijing: National Defense Industry Press, 1996: 291–294. 張保群. 輻射時(shí)序?qū)握緹o(wú)源跟蹤性能的影響[J]. 電訊技術(shù), 2015, 55(7): 746–752. doi: 10.3969/j.issn.1001-893x.2015.07.007ZHANG Baoqun. Effect of radiation time sequence on passive tracking with single observation platform[J]. Telecommunication Engineering, 2015, 55(7): 746–752. doi: 10.3969/j.issn.1001-893x.2015.07.007 -