一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于快速貝葉斯匹配追蹤優(yōu)化的海上稀疏信道估計(jì)方法

張穎 姚雨豐

張穎, 姚雨豐. 基于快速貝葉斯匹配追蹤優(yōu)化的海上稀疏信道估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2020, 42(2): 534-540. doi: 10.11999/JEIT190102
引用本文: 張穎, 姚雨豐. 基于快速貝葉斯匹配追蹤優(yōu)化的海上稀疏信道估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2020, 42(2): 534-540. doi: 10.11999/JEIT190102
Ying ZHANG, Yufeng YAO. Channel Estimation Algorithm of Maritime Sparse Channel Based on Fast Bayesian Matching Pursuit Optimization[J]. Journal of Electronics & Information Technology, 2020, 42(2): 534-540. doi: 10.11999/JEIT190102
Citation: Ying ZHANG, Yufeng YAO. Channel Estimation Algorithm of Maritime Sparse Channel Based on Fast Bayesian Matching Pursuit Optimization[J]. Journal of Electronics & Information Technology, 2020, 42(2): 534-540. doi: 10.11999/JEIT190102

基于快速貝葉斯匹配追蹤優(yōu)化的海上稀疏信道估計(jì)方法

doi: 10.11999/JEIT190102
基金項(xiàng)目: 國家自然科學(xué)基金(61673259)
詳細(xì)信息
    作者簡介:

    張穎:男,1968年生,博士,教授,博士生導(dǎo)師,研究方向?yàn)槲锫?lián)網(wǎng)、海事無線通信、無線自組織網(wǎng)絡(luò)

    姚雨豐:男,1995年生,碩士生,研究方向?yàn)楹J聼o線通信信道估計(jì)、無線信號傳輸技術(shù)

    通訊作者:

    張穎 yingzhang@shmtu.edu.cn

  • 中圖分類號: TN911

Channel Estimation Algorithm of Maritime Sparse Channel Based on Fast Bayesian Matching Pursuit Optimization

Funds: The National Natural Science Foundation of China (61673259)
  • 摘要:

    正交頻分復(fù)用(OFDM)系統(tǒng)中,由于頻率發(fā)生選擇性衰落會導(dǎo)致信道在數(shù)據(jù)傳輸中產(chǎn)生符號間干擾,因此接收機(jī)往往需要知道信道狀態(tài)信息。而在海上通信的情況下,信道傳輸會受到多種外界因素的干擾,往往需要預(yù)先進(jìn)行信道探測估計(jì)。為了提高估計(jì)性能,該文提出一種基于奇異值分解優(yōu)化觀測矩陣的快速貝葉斯匹配追蹤稀疏信道估計(jì)優(yōu)化算法(FBMPO),該算法不僅能夠充分考慮海上通信的信道稀疏性,也能夠降低信道的不確定性帶來的影響。計(jì)算機(jī)仿真實(shí)驗(yàn)表明,與傳統(tǒng)的信道估計(jì)算法相比,該算法能夠提高信道估計(jì)的精確度。

  • 圖  1  海上通信損耗模型

    圖  2  N為32時,p1為0.04時,3種算法的AMSE對比

    圖  4  N為64時,p1為0.04時,3種算法的AMSE對比

    圖  5  N為32時,p1為0.01時,3種算法的AMSE對比

    圖  3  N為48時,p1為0.04時,3種算法的AMSE對比

    圖  6  N為32時,p1為0.04時,3種算法的BER對比

    圖  8  N為64時,p1為0.04時,3種算法的BER對比

    圖  9  N為32時,p1為0.01時,3種算法的BER對比

    圖  7  N為48時,p1為0.04時,3種算法的BER對比

    表  1  FBMPO算法的偽代碼

     FBMPO算法
     輸入:參數(shù)向量s, 觀測矩陣${{\varphi } }_i$,迭代閾值K, R and L;
     輸出:${\tilde h_{ {\rm{MMSE} } } }$;
        (1) Initialize ${\mu _{0,1}}$ by式(20)
        (2) for i ← 1 to L:
        (3)   ${{}_i} \leftarrow {{{\varphi}} ^{ - 1}}{{{\phi}} _i};\;{{{\beta }}_i} \leftarrow {\left( {1 + {\sigma _1}^2{{\phi}} _i^{\rm{T}}{{}_i}} \right)^{ - 1}}$;
        (4)   ${\mu _{1,i} }^* \leftarrow {\mu _{0,1} } + \dfrac{1}{2}\lg \left( {\frac{ { { {{\beta} } _i} } }{ { {\sigma _1}^2} } } \right) + \dfrac{1}{2}{ {{\beta} } _i}{\left| { { {{y} }^{\rm{T} } }{ { }_i} } \right|^2}$
              $ + {\rm{lg} }\dfrac{ { {p_1} } }{ {1 - {p_1} } }$;
        (5) end for
        (6) for q ← 1 to K:
        (7)   ${\mu _{1,q}} \leftarrow {\mu _{1,i}}^*$; ${\rm{}}{b_{1,q}}^{\left( 1 \right)} \leftarrow {\mu _{1,i}}^*$; ${\rm{}}{c_{1,q}}^{\left( 1 \right)} \leftarrow {c_{1,i}}^*$;
            ${\beta _{1,q}}^{\left( 1 \right)} \leftarrow {\beta _{1,i}}^*$;
        (8) end for
        (9) ${{{\phi}}_i} \leftarrow {{{U}}_1} {{W}_2} {{{V}}_1}^{\rm T}$; ${{{\phi}} _i}' \leftarrow {{{U}}_1}{{{W}}_2}'{{{V}}_1}^{\rm{T}}$;
        (10) for l ← 1 to R:
        (11)   ${{{\beta}} _i} \leftarrow {\left( {1 + {\sigma _1}^2{{{\phi}} _i}{{'}^{\rm{T}}}{{}_i}} \right)^{ - 1}}$;
        (12)   ${{{\mu}} _i} \leftarrow {\mu ^{\left( {l - 1} \right)}} + \dfrac{1}{2}{\rm{lg}}{{{\beta}} _i} + \dfrac{1}{2}{{{\beta}} _i}{\left( {{{{s}}^{\rm{T}}}c_i^{\left( l \right)}} \right)^2} $
            $ + {\rm{lg}}\frac{{{p_1}}}{{1 - {p_1}}}$;
        (13)   $i_*^{\left( l \right)} \leftarrow {\rm{argma}}{{\rm{x}}_i}{\mu _i}$;
        (14)   ${G^{\left( l \right)}} \leftarrow {G^{\left( {l - 1} \right)}} \cup ^{\{i_{*}^{(l)}\}} $;
            $c_i^{\left( {l + 1} \right)} \leftarrow c_i^{\left( l \right)} - {{i}}_{i_*^{\left( l \right)}}^{\left( l \right)}{{{\beta }}_{i_*^{\left( l \right)}}}{{i}}_{i_*^{\left( l \right)}}^{{{\left( l \right)}^{\rm{T}}}}{{{\phi}} _i}$;
        (15) end for
        (16) 計(jì)算${\tilde h_{ {\rm{MMSE} } } }$ by式(30)
    下載: 導(dǎo)出CSV

    表  2  系統(tǒng)仿真參數(shù)設(shè)置

    參數(shù)仿真參數(shù)值
    信道抽頭數(shù)系統(tǒng)信道帶寬6410 MHz
    采樣頻率循環(huán)前綴長度10 MHz16
    調(diào)制方式BPSK
    非零抽頭概率 p1{0.04,0.01}
    FFT/IFFT點(diǎn)數(shù)1024
    訓(xùn)練序列長度{32,48,64}
    下載: 導(dǎo)出CSV

    表  3  不同算法在不同訓(xùn)練序列時的運(yùn)算時間(s)

    N=32N=48N=64
    OMP6.42848.041311.4591
    BCS18.254120.893124.5212
    FBMPO11.461813.719415.0951
    下載: 導(dǎo)出CSV
  • XIAO Liping, LIANG Zhibo, and LIU Kai. A novel compressed sensing-based channel estimation method for OFDM system[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100.A(1): 322–326. doi: 10.1587/transfun.E100.A.322
    DAI Linglong, WANG Zhaocheng, and YANG Zhixing. Compressive sensing based time domain synchronous OFDM transmission for vehicular communications[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 460–469. doi: 10.1109/JSAC.2013.SUP.0513041
    DAI Linglong, WANG Zhaocheng, and YANG Zhixing. Next-generation digital television terrestrial broadcasting systems: Key technologies and research trends[J]. IEEE Communications Magazine, 2012, 50(6): 150–158. doi: 10.1109/MCOM.2012.6211500
    LI Weichang and PREISIG J C. Estimation of rapidly time-varying sparse channels[J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 927–939. doi: 10.1109/JOE.2007.906409
    GE Lijun, CHENG Yitai, XU Wei, et al. Sparsity adaptive channel estimation based on compressed sensing for OFDM systems[J]. Journal of the Chinese Institute of Engineers, 2017, 40(2): 146–148. doi: 10.1080/02533839.2017.1287597
    TAUBOCK G, HLAWATSCH F, EIWEN D, et al. Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 255–271. doi: 10.1109/JSTSP.2010.2042410
    GUI Guan, WAN Qun, PENG Wei, et al. Sparse multipath channel estimation using compressive sampling matching pursuit algorithm[C]. The 7th IEEE VTS Asia Pacific Wireless Communications Symposium, Kaohsiung, China, 2010: 10–14.
    GUI Guan, WAN Qun, and PENG Wei. Fast compressed sensing-based sparse multipath channel estimation with smooth L0 algorithm[C]. The 3rd International Conference on Communications and Mobile Computing, Qingdao, China, 2011: 242–245.
    KARABULUT G Z and YONGACOGLU A. Sparse channel estimation using orthogonal matching pursuit algorithm[C]. The 60th IEEE Vehicular Technology Conference, Los Angeles, USA, 2004: 3880–3884.
    ZHANG Yi, VENKATESAN R, DOBRE O A, et al. Novel compressed sensing-based channel estimation algorithm and near-optimal pilot placement scheme[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2590–2603. doi: 10.1109/TWC.2015.2505315
    CHEN Guorui. Channel estimation with Bayesian framework based on compressed sensing algorithm in multimedia transmission system[J]. Multimedia Tools and Applications, 2019, 78(7): 8813–8825. doi: 10.1007/s11042-018-6443-1
    JOSE R, PAVITHRAN G, and ASWATHI C. Sparse channel estimation in OFDM systems using compressed sensing techniques in a Bayesian framework[J]. Computers & Electrical Engineering, 2017, 61: 173–183. doi: 10.1016/j.compeleceng.2017.03.014
    BARBU O E, MANCHóN C N, ROM C, et al. OFDM receiver for fast time-varying channels using block-sparse Bayesian learning[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 10053–10057. doi: 10.1109/TVT.2016.2554611
    PRASAD R, MURTHY C R, RAO B D. Joint channel estimation and data detection in MIMO-OFDM systems: A sparse Bayesian learning approach[J]. IEEE Transactions on Signal Processing, 2015, 63(20): 5369–5382. doi: 10.1109/TSP.2015.2451071
    SCHNITER P, POTTER L C, and ZINIEL J. Fast Bayesian matching pursuit[C]. 2008 Information Theory and Applications Workshop, San Diego, USA, 2008: 326–333.
    WEI Zhuangkun, HU Wenxiu, HAN Dahai, et al. Simultaneous channel estimation and signal detection in wireless ultraviolet communications combating inter-symbol-interference[J]. Optics Express, 2018, 26(3): 3260–3270. doi: 10.1364/OE.26.003260
    HE Chengbing, HUANG Jianguo, ZHANG Qunfei, et al. Single carrier frequency domain equalizer for underwater wireless communication[C]. 2009 WRI International Conference on Communications and Mobile Computing, Kunming, China, 2009: 186–190.
    QI Chenhao, YUE Guosen, WU Lenan, et al. Pilot design schemes for sparse channel estimation in OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1493–1505. doi: 10.1109/TVT.2014.2331085
    胡強(qiáng), 林云. 基于觀測矩陣優(yōu)化的自適應(yīng)壓縮感知算法[J]. 計(jì)算機(jī)應(yīng)用, 2017, 37(12): 3381–3385. doi: 10.11772/j.issn.1001-9081.2017.12.3381

    HU Qiang and LIN Yun. Adaptive compressed sensing algorithm based on observation matrix optimization[J]. Journal of Computer Applications, 2017, 37(12): 3381–3385. doi: 10.11772/j.issn.1001-9081.2017.12.3381
    CANDèS E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9–10): 589–592. doi: 10.1016/j.crma.2008.03.014
  • 加載中
圖(9) / 表(3)
計(jì)量
  • 文章訪問數(shù):  3557
  • HTML全文瀏覽量:  896
  • PDF下載量:  112
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-02-21
  • 修回日期:  2019-09-01
  • 網(wǎng)絡(luò)出版日期:  2019-09-06
  • 刊出日期:  2020-02-19

目錄

    /

    返回文章
    返回