一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于深度卷積神經(jīng)網(wǎng)絡(luò)的氣象雷達(dá)噪聲圖像語義分割方法

楊宏宇 王峰巖

楊宏宇, 王峰巖. 基于深度卷積神經(jīng)網(wǎng)絡(luò)的氣象雷達(dá)噪聲圖像語義分割方法[J]. 電子與信息學(xué)報(bào), 2019, 41(10): 2373-2381. doi: 10.11999/JEIT190098
引用本文: 楊宏宇, 王峰巖. 基于深度卷積神經(jīng)網(wǎng)絡(luò)的氣象雷達(dá)噪聲圖像語義分割方法[J]. 電子與信息學(xué)報(bào), 2019, 41(10): 2373-2381. doi: 10.11999/JEIT190098
Hongyun YANG, Fengyan WANG. Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2373-2381. doi: 10.11999/JEIT190098
Citation: Hongyun YANG, Fengyan WANG. Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2373-2381. doi: 10.11999/JEIT190098

基于深度卷積神經(jīng)網(wǎng)絡(luò)的氣象雷達(dá)噪聲圖像語義分割方法

doi: 10.11999/JEIT190098
基金項(xiàng)目: 國家自然科學(xué)基金(U1833107),國家科技重大專項(xiàng)(2012ZX03002002)
詳細(xì)信息
    作者簡介:

    楊宏宇:男,1969年生,博士,教授,研究方向?yàn)榫W(wǎng)絡(luò)信息安全、圖像處理

    王峰巖:男,1993年生,碩士生,研究方向?yàn)榫W(wǎng)絡(luò)信息安全、圖像處理

    通訊作者:

    楊宏宇 yhyxlx@hotmail.com

  • 中圖分類號: TN957.52

Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network

Funds: The National Natural Science Foundation of China (U1833107), The National Science and Technology Major Project (2012ZX03002002)
  • 摘要: 針對新一代多普勒氣象雷達(dá)的散射回波圖像受非降雨等噪聲回波干擾導(dǎo)致精細(xì)化短時(shí)氣象預(yù)報(bào)準(zhǔn)確度降低的問題,該文提出一種基于深度卷積神經(jīng)網(wǎng)絡(luò)(DCNN)的氣象雷達(dá)噪聲圖像語義分割方法。首先,設(shè)計(jì)一種深度卷積神經(jīng)網(wǎng)絡(luò)模型(DCNNM),利用MJDATA數(shù)據(jù)集的訓(xùn)練集數(shù)據(jù)進(jìn)行訓(xùn)練,通過前向傳播過程提取特征,將圖像高維全局語義信息與局部特征細(xì)節(jié)融合;然后,利用訓(xùn)練誤差值反向傳播迭代更新網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)模型的收斂效果最優(yōu)化;最后,通過該模型對氣象雷達(dá)圖像數(shù)據(jù)進(jìn)行分割處理。實(shí)驗(yàn)結(jié)果表明,該文方法對氣象雷達(dá)圖像的去噪效果較好,與光流法、全卷積網(wǎng)絡(luò)(FCN)等方法相比,該文方法對氣象雷達(dá)圖像中真實(shí)回波和噪聲回波的識別準(zhǔn)確率高,圖像的像素精度較高。
  • 圖  1  氣象雷達(dá)噪聲回波圖

    圖  2  DCNNM的網(wǎng)絡(luò)結(jié)構(gòu)

    圖  3  手工標(biāo)注的氣象雷達(dá)回波圖

    圖  4  灰度映射后的氣象雷達(dá)回波圖

    圖  5  添加空間信息后圖像的可視化結(jié)果

    圖  6  各類模型訓(xùn)練和測試時(shí)間的對比結(jié)果

    圖  7  經(jīng)過灰度處理的氣象雷達(dá)圖

    圖  8  氣象雷達(dá)圖像語義分割效果對比

    表  1  4類噪聲回波的特征描述

    噪聲回波形狀高度(km)強(qiáng)度(dBz)
    逆溫層回波分布比較均勻的塊狀回波,范圍較大,邊緣清晰5~610~30
    涓流回波分布比較均勻的半圓形回波,范圍較大,邊緣清晰6~75~15
    低空昆蟲回波分布不均勻的點(diǎn)狀回波,范圍小,比較分散2~30~10
    形態(tài)學(xué)噪聲回波分布不均勻的點(diǎn)狀或片狀回波,范圍較小,比較分散3~45~20
    下載: 導(dǎo)出CSV

    表  2  模型訓(xùn)練參數(shù)設(shè)置

    訓(xùn)練參數(shù)參數(shù)取值
    網(wǎng)絡(luò)學(xué)習(xí)率10–8
    權(quán)重衰減系數(shù)0.001
    momentum系數(shù)0.91
    感知屏蔽數(shù)量0.5
    批處理大小4
    網(wǎng)絡(luò)最大迭代次數(shù)10000
    下載: 導(dǎo)出CSV

    表  3  氣象雷達(dá)圖像去噪效果交叉驗(yàn)證取值表

    像素點(diǎn)255128
    255A手工標(biāo)注為降雨的像素點(diǎn),并且機(jī)器去噪也標(biāo)注為降雨的像素點(diǎn)B手工標(biāo)注為噪聲的像素點(diǎn),但是機(jī)器去噪標(biāo)注為降雨的像素點(diǎn)
    128C手工標(biāo)注為降雨的像素點(diǎn),但是機(jī)器去噪標(biāo)注為噪聲的像素點(diǎn)D手工標(biāo)注為噪聲的像素點(diǎn),并且機(jī)器去噪也標(biāo)注為噪聲的像素點(diǎn)
    下載: 導(dǎo)出CSV

    表  4  4類模型測試效果對比(%)

    數(shù)據(jù)集方法TERACCNERACCPA
    MJDATA (5000)光流法88.2159.0373.39
    FCN91.6879.6185.43
    光流法+FCN92.6073.9178.17
    Model193.6581.6596.75
    下載: 導(dǎo)出CSV

    表  5  4類模型測試效果對比(%)

    數(shù)據(jù)集方法TERACCNERACCPA
    MJDATA (7473)DeepLab v388.5781.6591.75
    ShelfNet86.9284.3490.51
    Mask R-CNN89.6685.2093.63
    Model290.4084.3692.79
    下載: 導(dǎo)出CSV
  • 楊植宗. 多普勒效應(yīng)與多普勒雷達(dá)[J]. 物理通報(bào), 2003(2): 47–48. doi: 10.3969/j.issn.0509-4038.2003.02.027

    YANG Zhizong. Doppler effect and Doppler radar[J]. Physics Bulletin, 2003(2): 47–48. doi: 10.3969/j.issn.0509-4038.2003.02.027
    NAGAYAMA S, MURAMATSU S, YAMADA H, et al. Millimeter wave radar image denoising with complex nonseparable oversampled lapped transform[C]. 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, Malaysia, 2017: 1824–1829.
    WU Peng, XU Hongling, and XIE Pengcheng. Research on ground penetrating radar image denoising using nonsubsampled contourlet transform and adaptive threshold algorithm[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9(5): 219–228. doi: 10.14257/ijsip.2016.9.5.19
    MASTRIANI M. Denoising based on wavelets and deblurring via self-organizing map for Synthetic Aperture Radar images[J]. International Scholarly and Scientific Research & Innovation, 2008, 2(9): 2073–2082.
    王俊, 楊成龍. 結(jié)合小波分析和變分原理的雷達(dá)圖像去噪模型[J]. 指揮控制與仿真, 2017, 39(5): 41–44. doi: 10.3969/j.issn.1673-3819.2017.05.009

    WANG Jun and YANG Chenglong. Radar image denoising model based on wavelet analysis and variation principle[J]. Command Control &Simulation, 2017, 39(5): 41–44. doi: 10.3969/j.issn.1673-3819.2017.05.009
    CHEN Chong and XU Zengbo. Aerial-image denoising based on convolutional neural network with multi-scale residual learning approach[J]. Information, 2018, 9(7): 169. doi: 10.3390/info9070169
    董曉亞, 趙曉麗, 張嘉祺. 一種改進(jìn)的噪聲圖像語義分割方法[J]. 光電子·激光, 2017, 28(12): 1372–1377. doi: 10.16136/j.joel.2017.12.0103

    DONG Xiaoya, ZHAO Xiaoli, and ZHANG Jiaqi. An improved semantic segmentation method for noisy image[J]. Journal of Optoelectronics·Laser, 2017, 28(12): 1372–1377. doi: 10.16136/j.joel.2017.12.0103
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]. International Conference on Learning Representations, San Diego, USA, 2015.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    ACHILLE A and SOATTO S. Information dropout: Learning optimal representations through noisy computation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2897–2905. doi: 10.1109/TPAMI.2017.2784440
    郭正紅, 張俊華, 郭曉鵬, 等. 結(jié)合視覺顯著圖的Seam Carving圖像縮放方法[J]. 云南大學(xué)學(xué)報(bào): 自然科學(xué)版, 2018, 40(2): 222–227.

    GUO Zhenghong, ZHANG Junhua, GUO Xiaopeng, et al. Seam Carving image scaling method with visual significant graph[J]. Journal of Yunnan University:Natural Sciences Edition, 2018, 40(2): 222–227.
    岳鑫, 肖晨. 基于奇異值分解和雙三次插值的圖像縮放算法改進(jìn)[J]. 西安郵電大學(xué)學(xué)報(bào), 2018, 23(4): 72–77. doi: 10.13682/j.issn.2095-6533.2018.04.012

    YUE Xin and XIAO Chen. Improvement of image scaling algorithm based on singular value decomposition and bicubic interpolation[J]. Journal of Xian University of Posts and Telecommunications, 2018, 23(4): 72–77. doi: 10.13682/j.issn.2095-6533.2018.04.012
    KOMAR M, YAKOBCHUK P, GOLOVKO V, et al. Deep neural network for image recognition based on the Caffe framework[C]. The Second IEEE International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 2018: 102–106.
    DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: Learning optical flow with convolutional networks[C]. IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 2758–2766.
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 3431–3440.
    CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. https://arxiv.org/abs/1706.05587, 2017.
    ZHUANG Juntang and YANG Junlin. ShelfNet for real-time semantic segmentation[EB/OL]. https://arxiv.org/abs/1811.11254v1, 2018.
    HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2980–2988.
  • 加載中
圖(8) / 表(5)
計(jì)量
  • 文章訪問數(shù):  6396
  • HTML全文瀏覽量:  2011
  • PDF下載量:  274
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-02-17
  • 修回日期:  2019-06-04
  • 網(wǎng)絡(luò)出版日期:  2019-06-10
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回