一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于格拉布斯準則和改進粒子濾波算法的水下傳感網(wǎng)目標跟蹤

張穎 高靈君

張穎, 高靈君. 基于格拉布斯準則和改進粒子濾波算法的水下傳感網(wǎng)目標跟蹤[J]. 電子與信息學(xué)報, 2019, 41(10): 2294-2301. doi: 10.11999/JEIT190079
引用本文: 張穎, 高靈君. 基于格拉布斯準則和改進粒子濾波算法的水下傳感網(wǎng)目標跟蹤[J]. 電子與信息學(xué)報, 2019, 41(10): 2294-2301. doi: 10.11999/JEIT190079
Ying ZHANG, Lingjun GAO. Target Tracking with Underwater Sensor Networks Based on Grubbs Criterion and Improved Particle Filter Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2294-2301. doi: 10.11999/JEIT190079
Citation: Ying ZHANG, Lingjun GAO. Target Tracking with Underwater Sensor Networks Based on Grubbs Criterion and Improved Particle Filter Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2294-2301. doi: 10.11999/JEIT190079

基于格拉布斯準則和改進粒子濾波算法的水下傳感網(wǎng)目標跟蹤

doi: 10.11999/JEIT190079
基金項目: 國家自然科學(xué)基金(61673259)
詳細信息
    作者簡介:

    張穎:男,1968年生,博士,教授,博士生導(dǎo)師,研究方向為物聯(lián)網(wǎng)、海事無線通信、無線自組織網(wǎng)絡(luò)

    高靈君:女,1994年生,碩士生,研究方向為物聯(lián)網(wǎng)信息融合,無線傳感網(wǎng)絡(luò)目標跟蹤、預(yù)測

    通訊作者:

    張穎 yingzhang@shmtu.edu.cn

  • 中圖分類號: TP393

Target Tracking with Underwater Sensor Networks Based on Grubbs Criterion and Improved Particle Filter Algorithm

Funds: The National Natural Science Foundation of China (61673259)
  • 摘要: 水下無線傳感網(wǎng)絡(luò)(UWSN)執(zhí)行目標跟蹤時,因為各個傳感器節(jié)點測量值對目標狀態(tài)估計的貢獻不一樣以及節(jié)點能量有限,所以探索一種好的節(jié)點融合權(quán)重方法和節(jié)點規(guī)劃機制能夠獲得更好的跟蹤性能。針對上述問題,該文提出一種基于Grubbs準則和互信息熵加權(quán)融合的分布式粒子濾波(PF)目標跟蹤算法(GMIEW)。首先利用Grubbs準則對傳感器節(jié)點所獲得的信息進行分析檢驗,去除干擾信息和錯誤信息。其次,在粒子濾波的重要性權(quán)值計算的過程中,引入動態(tài)加權(quán)因子,采用傳感器節(jié)點的測量值與目標狀態(tài)之間的互信息熵,來反映傳感器節(jié)點提供的目標信息量,從而獲得各個節(jié)點相應(yīng)的加權(quán)因子。最后,采用3維場景下的簇-樹型網(wǎng)絡(luò)拓撲結(jié)構(gòu),跟蹤監(jiān)測區(qū)域內(nèi)的目標。實驗結(jié)果顯示,該算法可有效提高水下傳感器網(wǎng)絡(luò)測量數(shù)據(jù)對目標跟蹤預(yù)測的準確度,降低跟蹤誤差。
  • 圖  1  水下傳感器網(wǎng)絡(luò)模型

    圖  2  3維網(wǎng)絡(luò)仿真場景

    圖  3  觀測噪聲為0.36, 3種算法的不同跟蹤軌跡

    圖  5  觀測噪聲為2.00, 3種算法的不同跟蹤軌跡

    圖  7  觀測噪聲為5.00, 3種算法的不同跟蹤軌跡

    圖  4  觀測噪聲為0.36, 3種不同算法的平均位置RMSE

    圖  6  觀測噪聲為2.00, 3種不同算法的平均位置RMSE

    圖  8  觀測噪聲為5.00, 3種不同算法的平均位置RMSE

    圖  9  小區(qū)域數(shù)量為4, 3種不同算法的平均位置RMSE

    圖  11  小區(qū)域數(shù)量為16, 3種不同算法的平均位置RMSE

    圖  12  不同小區(qū)域數(shù)量下3種不同算法的能量損耗

    圖  10  小區(qū)域數(shù)量為8, 3種不同算法的平均位置RMSE

    表  1  目標跟蹤算法仿真中的參數(shù)設(shè)置

    仿真參數(shù) 數(shù)值
    目標初始位置(m)(0, 60, 80)
    目標初始加速度(m/s2)(5, 6, –1)
    粒子數(shù)(個)2000
    聲音傳感器密度ρ(個/m3)0.00008
    仿真次數(shù)(次)50
    目標初始速度(m/s)(15, –20, 4)
    采樣間隔(s)1
    監(jiān)測時長(s)20
    過程噪聲方差0.1
    目標信號能量S5000
    下載: 導(dǎo)出CSV

    表  2  3種算法的平均跟蹤反應(yīng)時間

    跟蹤算法平均跟蹤反應(yīng)時間(s)
    AW0.1451
    AHPW0.3857
    GMIEW0.5046
    下載: 導(dǎo)出CSV

    表  3  3D仿真場景中不同傳感器密度ρ下3種算法的平均位置RMSE(個/m3)

    算法0.000060.000080.00010
    AW3.64521.04420.9236
    AHPW2.62350.89400.5024
    GMIEW1.52610.50230.3026
    下載: 導(dǎo)出CSV
  • HEIDEMANN J, STOJANOVIC M, and ZORZI M. Underwater sensor networks: Applications, advances and challenges[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1958): 158–175. doi: 10.1098/rsta.2011.0214
    SOUZA é L, NAKAMURA E F, and PAZZI R W. Target tracking for sensor networks: A survey[J]. ACM Computing Surveys (CSUR) , 2016, 49(2): 31. doi: 10.1145/2938639
    HAN Guangjie, JIANG Jinfang, ZHANG Chenyu, et al. A survey on mobile anchor node assisted localization in wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2220–2243. doi: 10.1109/COMST.2016.2544751
    周偉, 石為人, 張洪德, 等. 無線傳感器網(wǎng)絡(luò)的分布式目標跟蹤研究[J]. 儀器儀表學(xué)報, 2013, 34(7): 1485–1491. doi: 10.19650/j.cnki.cjsi.2013.07.007

    ZHOU Wei, SHI Weiren, ZHANG Hongde, et al. Study on distributed target tracking in wireless sensor networks[J]. Chinese Journal of Scientific Instrument, 2013, 34(7): 1485–1491. doi: 10.19650/j.cnki.cjsi.2013.07.007
    AKYILDIZ I F, POMPILI D, and MELODIA T. Underwater acoustic sensor networks: Research challenges[J]. Ad Hoc Networks, 2005, 3(3): 257–279. doi: 10.1016/j.adhoc.2005.01.004
    WANG Xin, XU Mengxi, WANG Huibin, et al. Combination of interacting multiple models with the particle filter for three-dimensional target tracking in underwater wireless sensor networks[J]. Mathematical Problems in Engineering, 2012, 2012: 829451. doi: 10.1155/2012/829451
    DEHNAVI S M, AYATI M, and ZAKERZADEH M R. Three dimensional target tracking via underwater acoustic wireless sensor network[C]. 2017 Artificial Intelligence and Robotics, Qazvin, Iran, 2017: 153–157. doi: 10.1109/RIOS.2017.7956459.
    ZHANG Qiang, ZHANG Chaojie, LIU Meiqin, et al. Local node selection for target tracking based on underwater wireless sensor networks[J]. International Journal of Systems Science, 2015, 46(16): 2918–2927. doi: 10.1080/00207721.2014.880199
    POOSTPASAND M and JAVIDAN R. An adaptive target tracking method for 3D underwater wireless sensor networks[J]. Wireless Networks, 2018, 24(8): 2797–2810. doi: 10.1007/s11276-017-1506-1
    ISBITIREN G and AKAN O B. Three-dimensional underwater target tracking with acoustic sensor networks[J]. IEEE Transactions on Vehicular Technology, 2011, 60(8): 3897–3906. doi: 10.1109/TVT.2011.2163538
    TISDALE J, RYAN A, KIM Z, et al. A multiple UAV system for vision-based search and localization[C]. 2008 American Control Conference, Seattle, USA, 2008: 1985–1990. doi: 10.1109/ACC.2008.4586784.
    RYAN A and HEDRICK J K. Particle filter based information-theoretic active sensing[J]. Robotics and Autonomous Systems, 2010, 58(5): 574–584. doi: 10.1016/j.robot.2010.01.001
    HOFFMANN G M and TOMLIN C J. Mobile sensor network control using mutual information methods and particle filters[J]. IEEE Transactions on Automatic Control, 2010, 55(1): 32–47. doi: 10.1109/TAC.2009.2034206
    AHMADI H, VIANI F, and BOUALLEGUE R. An accurate prediction method for moving target localization and tracking in wireless sensor networks[J]. Ad Hoc Networks, 2018, 70: 14–22. doi: 10.1016/j.adhoc.2017.11.008
    ORACEVIC A, AKBAS S, and OZDEMIR S. Secure and reliable object tracking in wireless sensor networks[J]. Computers & Security, 2017, 70: 307–318. doi: 10.1016/j.cose.2017.06.009
    LIU Meiqin, ZHANG Duo, ZHANG Senlin, et al. Node depth adjustment based target tracking in UWSNs using improved harmony search[J]. Sensors, 2017, 17(12): 2807. doi: 10.3390/s17122807
    HUANG Yan, LIANG Wei, YU Haibin, et al. Target tracking based on a distributed particle filter in underwater sensor networks[J]. Wireless Communications & Mobile Computing, 2008, 8(8): 1023–1033. doi: 10.1002/wcm.660
    胡玲, 侍洪波. 基于分簇的動態(tài)協(xié)同算法在無線傳感器網(wǎng)絡(luò)中的應(yīng)用[J]. 華東理工大學(xué)學(xué)報: 自然科學(xué)版, 2012, 38(3): 356–359, 390.

    HU Ling and SHI Hongbo. Dynamic collaborative algorithms based on clustering routing protocol applied in wireless sensor network[J]. Journal of East China University of Science and Technology:Natural Science Edition, 2012, 38(3): 356–359, 390.
    PILLUTLA L S. Network coding based distributed indoor target tracking using wireless sensor networks[J]. Wireless Personal Communications, 2017, 96(3): 3673–3691. doi: 10.1007/s11277-017-4069-7
    黃艷, 梁韋, 于海斌. 基于粒子濾波的無線傳感器網(wǎng)絡(luò)目標跟蹤算法[J]. 控制與決策, 2008, 23(12): 1389–1394. doi: 10.3321/j.issn:1001-0920.2008.12.014

    HUANG Yan, LIANG Wei, YU Haibin, et al. Tracking algorithms based on particle filter for wireless sensor networks[J]. Control and Decision, 2008, 23(12): 1389–1394. doi: 10.3321/j.issn:1001-0920.2008.12.014
    SOZER E M, STOJANOVIC M, and PROAKIS J G. Underwater acoustic networks[J]. IEEE Journal of Oceanic Engineering, 2000, 25(1): 72–83. doi: 10.1109/48.820738
    ZHANG Bingbing, WANG Yiyin, WANG Hongyi, et al. Tracking a duty-cycled autonomous underwater vehicle by underwater wireless sensor networks[J]. IEEE Access, 2017, 5: 18016–18032. doi: 10.1109/ACCESS.2017.2750322
    郭忠文, 羅漢江, 洪鋒, 等. 水下無線傳感器網(wǎng)絡(luò)的研究進展[J]. 計算機研究與發(fā)展, 2010, 47(3): 377–389.

    GUO Zhongwen, LUO Hanjiang, HONG Feng, et al. Current progress and research issues in underwater sensor networks[J]. Journal of Computer Research and Development, 2010, 47(3): 377–389.
    柴毅, 屈劍鋒, 郭茂耘, 等. 分布式傳感器網(wǎng)絡(luò)在線自適應(yīng)數(shù)據(jù)融合算法研究[J]. 儀器儀表學(xué)報, 2007, 28(8): 129–134.

    CHAI Yi, QU Jianfeng, GUO Maoyun, et al. Distributed online adaptive data fusion algorithm for wireless sensor networks[J]. Chinese Journal of Scientific Instrument, 2007, 28(8): 129–134.
  • 加載中
圖(12) / 表(3)
計量
  • 文章訪問數(shù):  1770
  • HTML全文瀏覽量:  681
  • PDF下載量:  96
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-01-28
  • 修回日期:  2019-08-29
  • 網(wǎng)絡(luò)出版日期:  2019-09-03
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回