基于格拉布斯準則和改進粒子濾波算法的水下傳感網(wǎng)目標跟蹤
doi: 10.11999/JEIT190079
-
上海海事大學(xué)信息工程學(xué)院 上海 201306
基金項目: 國家自然科學(xué)基金(61673259)
Target Tracking with Underwater Sensor Networks Based on Grubbs Criterion and Improved Particle Filter Algorithm
-
College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
Funds: The National Natural Science Foundation of China (61673259)
-
摘要: 水下無線傳感網(wǎng)絡(luò)(UWSN)執(zhí)行目標跟蹤時,因為各個傳感器節(jié)點測量值對目標狀態(tài)估計的貢獻不一樣以及節(jié)點能量有限,所以探索一種好的節(jié)點融合權(quán)重方法和節(jié)點規(guī)劃機制能夠獲得更好的跟蹤性能。針對上述問題,該文提出一種基于Grubbs準則和互信息熵加權(quán)融合的分布式粒子濾波(PF)目標跟蹤算法(GMIEW)。首先利用Grubbs準則對傳感器節(jié)點所獲得的信息進行分析檢驗,去除干擾信息和錯誤信息。其次,在粒子濾波的重要性權(quán)值計算的過程中,引入動態(tài)加權(quán)因子,采用傳感器節(jié)點的測量值與目標狀態(tài)之間的互信息熵,來反映傳感器節(jié)點提供的目標信息量,從而獲得各個節(jié)點相應(yīng)的加權(quán)因子。最后,采用3維場景下的簇-樹型網(wǎng)絡(luò)拓撲結(jié)構(gòu),跟蹤監(jiān)測區(qū)域內(nèi)的目標。實驗結(jié)果顯示,該算法可有效提高水下傳感器網(wǎng)絡(luò)測量數(shù)據(jù)對目標跟蹤預(yù)測的準確度,降低跟蹤誤差。
-
關(guān)鍵詞:
- 水下無線傳感器網(wǎng)絡(luò) /
- 目標跟蹤 /
- Grubbs準則 /
- 互信息熵 /
- 粒子濾波
Abstract: When the Underwater Wireless Sensor Network (UWSN) performs target tracking, the contributions of the measured values of the nodes are different, and the battery energy carried by the sensor node is limited. Therefore, a good node fusion weight method and node planning mechanism can obtain better tracking performance. A distributed particle filter target tracking algorithm based on Grubbs criterion and Mutual Information Entropy Weighted (GMIEW) fusion is proposed to solve the above problem in this paper. Firstly, the Grubbs criterion is used to analyze and verify the information obtained by the sensor nodes before the information fusion, and the interference information and error information are removed. Secondly, in the process of calculating the importance weight of particle filter, the dynamic weighting factor is introduced. The mutual information entropy between the measured value of the sensor node and the target state is used to reflect the amount of target information provided by the sensor node, so as to obtain the corresponding weighting factor of each node. Finally, the improved cluster-tree network topology is used to track the target in three-dimensional space. Simulation results show that the proposed algorithm improves greatly the accuracy of underwater sensor measurement data for target tracking prediction and reduces the tracking error. -
表 1 目標跟蹤算法仿真中的參數(shù)設(shè)置
仿真參數(shù) 數(shù)值 目標初始位置(m) (0, 60, 80) 目標初始加速度(m/s2) (5, 6, –1) 粒子數(shù)(個) 2000 聲音傳感器密度ρ(個/m3) 0.00008 仿真次數(shù)(次) 50 目標初始速度(m/s) (15, –20, 4) 采樣間隔(s) 1 監(jiān)測時長(s) 20 過程噪聲方差 0.1 目標信號能量S 5000 下載: 導(dǎo)出CSV
表 3 3D仿真場景中不同傳感器密度ρ下3種算法的平均位置RMSE(個/m3)
算法 0.00006 0.00008 0.00010 AW 3.6452 1.0442 0.9236 AHPW 2.6235 0.8940 0.5024 GMIEW 1.5261 0.5023 0.3026 下載: 導(dǎo)出CSV
-
HEIDEMANN J, STOJANOVIC M, and ZORZI M. Underwater sensor networks: Applications, advances and challenges[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1958): 158–175. doi: 10.1098/rsta.2011.0214 SOUZA é L, NAKAMURA E F, and PAZZI R W. Target tracking for sensor networks: A survey[J]. ACM Computing Surveys (CSUR) , 2016, 49(2): 31. doi: 10.1145/2938639 HAN Guangjie, JIANG Jinfang, ZHANG Chenyu, et al. A survey on mobile anchor node assisted localization in wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2220–2243. doi: 10.1109/COMST.2016.2544751 周偉, 石為人, 張洪德, 等. 無線傳感器網(wǎng)絡(luò)的分布式目標跟蹤研究[J]. 儀器儀表學(xué)報, 2013, 34(7): 1485–1491. doi: 10.19650/j.cnki.cjsi.2013.07.007ZHOU Wei, SHI Weiren, ZHANG Hongde, et al. Study on distributed target tracking in wireless sensor networks[J]. Chinese Journal of Scientific Instrument, 2013, 34(7): 1485–1491. doi: 10.19650/j.cnki.cjsi.2013.07.007 AKYILDIZ I F, POMPILI D, and MELODIA T. Underwater acoustic sensor networks: Research challenges[J]. Ad Hoc Networks, 2005, 3(3): 257–279. doi: 10.1016/j.adhoc.2005.01.004 WANG Xin, XU Mengxi, WANG Huibin, et al. Combination of interacting multiple models with the particle filter for three-dimensional target tracking in underwater wireless sensor networks[J]. Mathematical Problems in Engineering, 2012, 2012: 829451. doi: 10.1155/2012/829451 DEHNAVI S M, AYATI M, and ZAKERZADEH M R. Three dimensional target tracking via underwater acoustic wireless sensor network[C]. 2017 Artificial Intelligence and Robotics, Qazvin, Iran, 2017: 153–157. doi: 10.1109/RIOS.2017.7956459. ZHANG Qiang, ZHANG Chaojie, LIU Meiqin, et al. Local node selection for target tracking based on underwater wireless sensor networks[J]. International Journal of Systems Science, 2015, 46(16): 2918–2927. doi: 10.1080/00207721.2014.880199 POOSTPASAND M and JAVIDAN R. An adaptive target tracking method for 3D underwater wireless sensor networks[J]. Wireless Networks, 2018, 24(8): 2797–2810. doi: 10.1007/s11276-017-1506-1 ISBITIREN G and AKAN O B. Three-dimensional underwater target tracking with acoustic sensor networks[J]. IEEE Transactions on Vehicular Technology, 2011, 60(8): 3897–3906. doi: 10.1109/TVT.2011.2163538 TISDALE J, RYAN A, KIM Z, et al. A multiple UAV system for vision-based search and localization[C]. 2008 American Control Conference, Seattle, USA, 2008: 1985–1990. doi: 10.1109/ACC.2008.4586784. RYAN A and HEDRICK J K. Particle filter based information-theoretic active sensing[J]. Robotics and Autonomous Systems, 2010, 58(5): 574–584. doi: 10.1016/j.robot.2010.01.001 HOFFMANN G M and TOMLIN C J. Mobile sensor network control using mutual information methods and particle filters[J]. IEEE Transactions on Automatic Control, 2010, 55(1): 32–47. doi: 10.1109/TAC.2009.2034206 AHMADI H, VIANI F, and BOUALLEGUE R. An accurate prediction method for moving target localization and tracking in wireless sensor networks[J]. Ad Hoc Networks, 2018, 70: 14–22. doi: 10.1016/j.adhoc.2017.11.008 ORACEVIC A, AKBAS S, and OZDEMIR S. Secure and reliable object tracking in wireless sensor networks[J]. Computers & Security, 2017, 70: 307–318. doi: 10.1016/j.cose.2017.06.009 LIU Meiqin, ZHANG Duo, ZHANG Senlin, et al. Node depth adjustment based target tracking in UWSNs using improved harmony search[J]. Sensors, 2017, 17(12): 2807. doi: 10.3390/s17122807 HUANG Yan, LIANG Wei, YU Haibin, et al. Target tracking based on a distributed particle filter in underwater sensor networks[J]. Wireless Communications & Mobile Computing, 2008, 8(8): 1023–1033. doi: 10.1002/wcm.660 胡玲, 侍洪波. 基于分簇的動態(tài)協(xié)同算法在無線傳感器網(wǎng)絡(luò)中的應(yīng)用[J]. 華東理工大學(xué)學(xué)報: 自然科學(xué)版, 2012, 38(3): 356–359, 390.HU Ling and SHI Hongbo. Dynamic collaborative algorithms based on clustering routing protocol applied in wireless sensor network[J]. Journal of East China University of Science and Technology:Natural Science Edition, 2012, 38(3): 356–359, 390. PILLUTLA L S. Network coding based distributed indoor target tracking using wireless sensor networks[J]. Wireless Personal Communications, 2017, 96(3): 3673–3691. doi: 10.1007/s11277-017-4069-7 黃艷, 梁韋, 于海斌. 基于粒子濾波的無線傳感器網(wǎng)絡(luò)目標跟蹤算法[J]. 控制與決策, 2008, 23(12): 1389–1394. doi: 10.3321/j.issn:1001-0920.2008.12.014HUANG Yan, LIANG Wei, YU Haibin, et al. Tracking algorithms based on particle filter for wireless sensor networks[J]. Control and Decision, 2008, 23(12): 1389–1394. doi: 10.3321/j.issn:1001-0920.2008.12.014 SOZER E M, STOJANOVIC M, and PROAKIS J G. Underwater acoustic networks[J]. IEEE Journal of Oceanic Engineering, 2000, 25(1): 72–83. doi: 10.1109/48.820738 ZHANG Bingbing, WANG Yiyin, WANG Hongyi, et al. Tracking a duty-cycled autonomous underwater vehicle by underwater wireless sensor networks[J]. IEEE Access, 2017, 5: 18016–18032. doi: 10.1109/ACCESS.2017.2750322 郭忠文, 羅漢江, 洪鋒, 等. 水下無線傳感器網(wǎng)絡(luò)的研究進展[J]. 計算機研究與發(fā)展, 2010, 47(3): 377–389.GUO Zhongwen, LUO Hanjiang, HONG Feng, et al. Current progress and research issues in underwater sensor networks[J]. Journal of Computer Research and Development, 2010, 47(3): 377–389. 柴毅, 屈劍鋒, 郭茂耘, 等. 分布式傳感器網(wǎng)絡(luò)在線自適應(yīng)數(shù)據(jù)融合算法研究[J]. 儀器儀表學(xué)報, 2007, 28(8): 129–134.CHAI Yi, QU Jianfeng, GUO Maoyun, et al. Distributed online adaptive data fusion algorithm for wireless sensor networks[J]. Chinese Journal of Scientific Instrument, 2007, 28(8): 129–134. -