Spectrum Sensing Based on Signal Envelope of Rayleigh Multi-path Fading Channels
-
Information Engineering College, Beijing Institute of Petrochemical Technology, Beijing 102600, China
-
摘要:
為提高信號(hào)采樣值之間的相關(guān)性和降低噪聲對(duì)感知性能的影響,該文提出基于信號(hào)包絡(luò)自相關(guān)矩陣的頻譜感知算法。首先對(duì)采樣信號(hào)等間隔時(shí)長(zhǎng)截取,以相鄰間隔的采樣值計(jì)算信號(hào)自相關(guān)性,并構(gòu)造出近似自相關(guān)矩陣。其次依據(jù)矩陣次對(duì)角線元素性質(zhì)構(gòu)造了統(tǒng)計(jì)量。分別計(jì)算了該統(tǒng)計(jì)量的檢測(cè)概率分布函數(shù)與虛警概率分布函數(shù),分析了頻譜感知算法的檢測(cè)性能,算法優(yōu)化了信號(hào)相關(guān)性的計(jì)算,降低了噪聲對(duì)感知性能的影響。最后通過仿真驗(yàn)證了不同參數(shù)對(duì)檢測(cè)概率和虛警概率的影響,并提出了進(jìn)一步提高檢測(cè)性能的措施。
-
關(guān)鍵詞:
- 頻譜感知 /
- 瑞利信道 /
- 信號(hào)包絡(luò) /
- 相關(guān)矩陣
Abstract:In order to improve the correlation between signal samplings and reduce the influence of noise on sensing performance, a spectrum sensing algorithm based on signal envelope autocorrelation matrix is proposed in the paper. Firstly, the sampling signals are intercepted at equal intervals, the signal autocorrelations are calculated by means of the adjacent interval samples, and an approximate autocorrelation matrix is constructed. Secondly, the statistic is constructed according to the properties of the sub-diagonal elements of the matrix. The detection probability distribution function and the false alarm probability distribution function of the statistic are calculated respectively. The detection performances of the spectrum sensing algorithm are analyzed. The algorithm optimizes the calculation of signal correlation and reduces the impact of noise on detection performance. Finally, the effects of different parameters on detection probability and false alarm probability are verified by simulation, and some measures are proposed to improve detection performance.
-
Key words:
- Spectrum sensing /
- Rayleigh channels /
- Signal envelope /
- Correlation matrix
-
AKYILDIZ I F, LEE W Y, VURAN M C, et al. A survey on spectrum management in cognitive radio networks[J]. IEEE Communications Magazine, 2008, 46(4): 40–48. doi: 10.1109/MCOM.2008.4481339 GHASEMI A and SOUSA E S. Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs[J]. IEEE Communications Magazine, 2008, 46(4): 32–39. doi: 10.1109/MCOM.2008.4481338 HAMID M, BEN SLIMANE S, VAN MOER W, et al. Spectrum sensing challenges: Blind sensing and sensing optimization[J]. IEEE Instrumentation & Measurement Magazine, 2016, 19(2): 44–52. doi: 10.1109/MIM.2016.7462794 ALI A and HAMOUDA W. Advances on spectrum sensing for cognitive radio networks: Theory and applications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1277–1304. doi: 10.1109/COMST.2016.2631080 TANDRA R and SAHAI A. SNR walls for signal detection[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1): 4–17. doi: 10.1109/jstsp.2007.914879 CHATZIANTONIOU E, ALLEN B, VELISAVLJEVIC V, et al. Energy detection based spectrum sensing over two-wave with diffuse power fading channels[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 868–874. doi: 10.1109/TVT.2016.2556084 SINGH A, BHATNAGAR M R, and MALLIK R K. Performance of an improved energy detector in multihop cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(2): 732–743. doi: 10.1109/TVT.2015.2401332 CHIN W L, LI Jiaming, and CHEN H H. Low-complexity energy detection for spectrum sensing with random arrivals of primary users[J]. IEEE Transactions on Vehicular Technology, 2016, 65(2): 947–952. doi: 10.1109/TVT.2015.2405558 QUAN Zhi, ZHANG Wenyi, SHELLHAMMER S J, et al. Optimal spectral feature detection for spectrum sensing at very low SNR[J]. IEEE Transactions on Communications, 2011, 59(1): 201–212. doi: 10.1109/tcomm.2010.112310.090306 MEHRABIAN A and ZAIMBASHI A. Robust and blind eigenvalue-based multiantenna spectrum sensing under IQ imbalance[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5581–5591. doi: 10.1109/TWC.2018.2847357 BOUALLEGUE K, DAYOUB I, GHARBI M, et al. Blind spectrum sensing using extreme eigenvalues for cognitive radio networks[J]. IEEE Communications Letters, 2018, 22(7): 1386–1389. doi: 10.1109/LCOMM.2017.2776147 JIN Ming, GUO Qinghua, and LI Youming. On covariance matrix based spectrum sensing over frequency-selective channels[J]. IEEE Access, 2018, 6: 29532–29540. doi: 10.1109/ACCESS.2018.2842099 MERRITT J C and CHISUM J D. High-speed cross-correlation for spectrum sensing and direction finding of time-varying signals[J]. IEEE Sensors Journal, 2018, 18(15): 6161–6168. doi: 10.1109/JSEN.2018.2847598 HAN Weijia, HUANG Chuan, LI Jiandong, et al. Correlation-based spectrum sensing with oversampling in cognitive radio[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(5): 788–802. doi: 10.1109/jsac.2014.2361076 JIN Ming, GUO Qinghua, XI Jiangtao, et al. Spectrum sensing using weighted covariance matrix in Rayleigh fading channels[J]. IEEE Transactions on Vehicular Technology, 2015, 64(11): 5137–5148. doi: 10.1109/TVT.2014.2379924 SHARMA R K and WALLACE J W. Correlation-based sensing for cognitive radio networks: Bounds and experimental assessment[J]. IEEE Sensors Journal, 2011, 11(3): 657–666. doi: 10.1109/JSEN.2010.2058097 -