異構(gòu)網(wǎng)絡(luò)中基于能效優(yōu)化的D2D資源分配機制
doi: 10.11999/JEIT190042
-
貴州大學(xué)大數(shù)據(jù)與信息工程學(xué)院 貴陽 550025
D2D Resource Allocation Mechanism Based on Energy EfficiencyOptimization in Heterogeneous Networks
-
College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
-
摘要:
針對異構(gòu)網(wǎng)絡(luò)中D2D通信復(fù)用蜂窩用戶頻譜時存在的頻譜分配問題,該文提出一種基于改進離散鴿群優(yōu)化(PIO)算法的D2D通信資源分配機制。通過設(shè)置信干噪比(SINR)門限值來保證用戶的通信服務(wù)質(zhì)量(QoS),采用功率控制算法為用戶設(shè)置發(fā)射功率,使用基于運動權(quán)值的二進制離散鴿群優(yōu)化(MWBPIO)算法為D2D用戶進行資源分配,并將D2D通信技術(shù)與中繼技術(shù)進行有效結(jié)合,為邊緣用戶建立D2D中繼鏈路,保證邊緣用戶的通信質(zhì)量,最大化系統(tǒng)性能目標。仿真結(jié)果表明,該方案有效抑制了異構(gòu)通信系統(tǒng)中引入D2D用戶后導(dǎo)致的干擾問題,提高了邊緣用戶的通信質(zhì)量和系統(tǒng)的頻譜利用率以及系統(tǒng)的能效。
-
關(guān)鍵詞:
- D2D通信 /
- 鴿群優(yōu)化算法 /
- 資源分配 /
- 中繼選擇 /
- 能效
Abstract:For the problem of spectrum allocation in the multiplexing of cellular user spectrum resources by Device-to-Device (D2D) communication in heterogeneous networks, a D2D communication resource allocation mechanism based on improved discrete Pigeon-Inspired Optimization(PIO) algorithm is proposed. The user's Quality of Service (QoS) is guaranteed by setting the Signal-to-Interference plus Noise Ratio (SINR) threshold, the transmitting power is set for users by power control algorithms. To allocate resources for D2D users, the Binary discrete PIO based on Motion Weight (MWBPIO) algorithm is used. To ensure the communication quality of edge users, the D2D communication technology and relay technology are used to establish D2D relay links, so then the performance of system can be maximized. Simulation results show that the proposed scheme can effectively suppress the interference caused by the introduction of D2D users in heterogeneous communication systems. Moreover, the proposed scheme can effectively improve the communication quality of edge users, and improve the utilization of spectrum resources and the performance of the system.
-
表 1 Rosenbrock函數(shù)對應(yīng)不同a值的函數(shù)值
a 最優(yōu)值 平均值 0.10 0.0082 0.1029 0.15 0.0836 0.1347 0.20 0.0049 0.1009 0.25 0.0736 0.1342 0.30 0.0623 0.1234 0.35 0.0686 0.1604 0.40 0.1754 0.3342 0.45 0.6249 0.9983 0.50 0.0040 0.0064 0.55 0.0009 0.0002 0.60 0.0041 0.0066 0.65 0.0435 0.1167 0.70 0.4645 0.7743 0.75 0.6623 1.0885 0.80 0.7745 1.2234 0.85 0.8842 1.3354 0.90 0.4678 0.7762 0.95 0.5435 0.9943 1.00 0.6735 0.9984 下載: 導(dǎo)出CSV
表 2 Rosenbrock函數(shù)對應(yīng)不同e值的函數(shù)值
e 最優(yōu)值 平均值 1.0 0.7249 1.1983 1.5 0.0249 0.4983 2.0 0.0199 0.1234 2.5 0.0236 0.4342 3.0 0.6754 1.1942 3.5 0.5549 1.1009 4.0 0.6740 1.1864 4.5 0.5686 1.0604 5.0 0.4836 1.0347 下載: 導(dǎo)出CSV
表 3 系統(tǒng)仿真參數(shù)
參數(shù) 數(shù)值 小區(qū)半徑${R_{\rm cell} }$ 500 m 宏蜂窩用戶數(shù) 50個 微蜂窩用戶數(shù) 5個 D2D用戶對數(shù) 25對 中繼節(jié)點數(shù) 25個 蜂窩用戶最大發(fā)射功率 24 dBm D2D用戶最大發(fā)射功率 15 dBm 熱噪聲功率 –174 dBm/Hz 下載: 導(dǎo)出CSV
-
HOANG T D, LE Longbao, and LE-NGOC T. Energy-efficient Resource allocation for D2D communications in cellular networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 6972–6986. doi: 10.1109/TVT.2015.2482388 LIANG Le, LI G Y, and XU Wei. Resource allocation for D2D-enabled vehicular communications[J]. IEEE Transactions on Communications, 2017, 65(7): 3186–3197. doi: 10.1109/TCOMM.2017.2699194 HUANG Jun, XING Congcong, QIAN Yi, et al. Resource allocation for multicell device-to-device communications underlaying 5G networks: A game-theoretic mechanism with incomplete information[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 2557–2570. doi: 10.1109/TVT.2017.2765208 CHEN Yali, AI Bo, NIU Yong, et al. Resource allocation for device-to-device communications underlaying heterogeneous cellular networks using coalitional games[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 4163–4176. doi: 10.1109/TWC.2018.2821151 SUN Shijie, KIM K Y, SHIN O S, et al. Device-to-device resource allocation in LTE-advanced networks by hybrid particle swarm optimization and genetic algorithm[J]. Peer-to-Peer Networking and Applications, 2016, 9(5): 945–954. doi: 10.1007/s12083-015-0424-1 張祖凡, 王立沙, 陳美鈴. 基于D2D對分組的TDD系統(tǒng)資源分配算法[J]. 計算機研究與發(fā)展, 2017, 54(5): 961–968. doi: 10.7544/issn1000-1239.2017.20151128ZHANG Zufan, WANG Lisha, and CHEN Meiling. Resource allocation algorithm based on D2D pairs grouping in TDD system[J]. Journal of Computer Research and Development, 2017, 54(5): 961–968. doi: 10.7544/issn1000-1239.2017.20151128 KIM T and DONG Miaomiao. An iterative hungarian method to joint relay selection and resource allocation for D2D communications[J]. IEEE Wireless Communications Letters, 2014, 3(6): 625–628. doi: 10.1109/LWC.2014.2338318 GAO Chuhan, LI Yong, ZHAO Yulei, et al. A two-level game theory approach for joint relay selection and resource allocation in network coding assisted D2D communications[J]. IEEE Transactions on Mobile Computing, 2017, 16(10): 2697–2711. doi: 10.1109/TMC.2016.2642190 曲樺, 朱正倉, 趙季紅, 等. 移動中繼協(xié)助下終端直通中面向能效的聯(lián)合中繼選擇和資源分配方案[J]. 電子與信息學(xué)報, 2017, 39(10): 2464–2471. doi: 10.11999/JEIT161359QU Hua, ZHU Zhengcang, ZHAO Jihong, et al. Energy-efficient joint relay selection and resource allocation scheme for mobile relay aided device-to-device communication[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2464–2471. doi: 10.11999/JEIT161359 EBERHART R C and SHI Yuhui. Particle swarm optimization: Developments, applications and resources[C]. 2001 Congress on Evolutionary Computation, Seoul, South Korea, 2001: 81–86. doi: 10.1109/CEC.2001.934374. JIANG Yanxiang, LIU Qiang, ZHENG Fuchun, et al. Energy-efficient joint resource allocation and power control for D2D communications[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6119–6127. doi: 10.1109/TVT.2015.2472995 DUAN Haibin and QIAO Peixin. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning[J]. International Journal of Intelligent Computing and Cybernetics, 2014, 7(1): 24–37. doi: 10.1108/IJICC-02-2014-0005 陶國嬌, 李智. 帶認知因子的交叉鴿群算法[J]. 四川大學(xué)學(xué)報: 自然科學(xué)版, 2018, 55(2): 295–300. doi: 10.3969/j.issn.0490-6756.2018.02.014TAO Guojiao and LI Zhi. A crossed pigeon-inspired optimization algorithm with congnitive factor[J]. Journal of Sichuan University:Natural Science Edition, 2018, 55(2): 295–300. doi: 10.3969/j.issn.0490-6756.2018.02.014 CHEN S M and HSIN W C. Weighted fuzzy interpolative reasoning based on the slopes of fuzzy sets and particle swarm optimization techniques[J]. IEEE Transactions on Cybernetics, 2015, 45(7): 1250–1261. doi: 10.1109/TCYB.2014.2347956 KENNEDY J and EBERHART R C. A discrete binary version of the particle swarm algorithm[C]. 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, USA, 1997: 4104–4108. doi: 10.1109/ICSMC.1997.637339. 李志華. D2D通信系統(tǒng)功率控制算法研究[D]. [碩士論文], . 西南交通大學(xué), 2013: 20–22. doi: 10.7666/d.Y2320245.LI Zhihua. Research on power control algorithm for device-to-device communication system[D]. [Master dissertation], Southwest Jiaotong University, 2013: 20–22. doi: 10.7666/d.Y2320245. -