一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

多級跳線連接的深度殘差網(wǎng)絡(luò)超分辨率重建

趙小強 宋昭漾

趙小強, 宋昭漾. 多級跳線連接的深度殘差網(wǎng)絡(luò)超分辨率重建[J]. 電子與信息學(xué)報, 2019, 41(10): 2501-2508. doi: 10.11999/JEIT190036
引用本文: 趙小強, 宋昭漾. 多級跳線連接的深度殘差網(wǎng)絡(luò)超分辨率重建[J]. 電子與信息學(xué)報, 2019, 41(10): 2501-2508. doi: 10.11999/JEIT190036
Xiaoqiang ZHAO, Zhaoyang SONG. Super-Resolution Reconstruction of Deep Residual Network with Multi-Level Skip Connections[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2501-2508. doi: 10.11999/JEIT190036
Citation: Xiaoqiang ZHAO, Zhaoyang SONG. Super-Resolution Reconstruction of Deep Residual Network with Multi-Level Skip Connections[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2501-2508. doi: 10.11999/JEIT190036

多級跳線連接的深度殘差網(wǎng)絡(luò)超分辨率重建

doi: 10.11999/JEIT190036
基金項目: 國家科學(xué)自然基金(61763029, 61873116)
詳細信息
    作者簡介:

    趙小強:男,1969年生,博士生導(dǎo)師,教授,主要研究方向為故障診斷,圖像處理,生產(chǎn)調(diào)度等

    宋昭漾:男,1995年生,碩士生,研究方向為圖像處理

    通訊作者:

    趙小強 xqzhao@lut.cn

  • 中圖分類號: TP391

Super-Resolution Reconstruction of Deep Residual Network with Multi-Level Skip Connections

Funds: The National Natural Science Foundation of China (61763029, 61873116)
  • 摘要: 由于快速的卷積神經(jīng)網(wǎng)絡(luò)超分辨率重建算法(FSRCNN)卷積層數(shù)少、相鄰卷積層的特征信息之間缺乏關(guān)聯(lián)性,因此難以提取到圖像深層信息導(dǎo)致圖像超分辨率重建效果不佳。針對此問題,該文提出多級跳線連接的深度殘差網(wǎng)絡(luò)超分辨率重建方法。首先,該方法設(shè)計了多級跳線連接的殘差塊,在多級跳線連接的殘差塊基礎(chǔ)上構(gòu)造了多級跳線連接的深度殘差網(wǎng)絡(luò),解決相鄰卷積層的特性信息缺乏關(guān)聯(lián)性的問題;然后,使用隨機梯度下降法(SGD)以可調(diào)節(jié)的學(xué)習(xí)率策略對多級跳線連接的深度殘差網(wǎng)絡(luò)進行訓(xùn)練,得到該網(wǎng)絡(luò)超分辨率重建模型;最后,將低分辨率圖像輸入到多級跳線連接的深度殘差網(wǎng)絡(luò)超分辨率重建模型中,通過多級跳線連接的殘差塊得到預(yù)測的殘差特征值,再將殘差圖像和低分辨率圖像組合在一起轉(zhuǎn)化為高分辨率圖像。該文方法與bicubic, A+, SRCNN, FSRCNN和ESPCN算法在Set5和Set14測試集上進行了對比測試,在視覺效果和評價指標數(shù)值上該方法都優(yōu)于其它對比算法。
  • 圖  1  殘差塊結(jié)構(gòu)圖

    圖  2  多級跳線連接的殘差塊結(jié)構(gòu)圖

    圖  3  相鄰兩個多級跳線連接的殘差塊結(jié)構(gòu)圖

    圖  4  多級跳線連接的深度殘差網(wǎng)絡(luò)結(jié)構(gòu)圖

    圖  5  不同跳線系數(shù)測得的峰值信噪比(PSNR)曲線

    圖  6  Set5 測試集中的baby_GT重建對比圖

    表  1  在Set5測試集上的測得的PSNR(dB)/SSIM值

    放大因子Bicubic[27]A+[28]SRCNN[18]FSRCNN[19]ESPCN[21]本文方法
    233.66/0.929936.54/0.954436.66/0.954237.00/0.955837.06/0.955937.35/0.9573
    330.39/0.868232.58/0.908832.75/0.909033.16/0.910433.13/0.913533.45/0.9162
    428.42/0.810430.28/0.860330.48/0.862830.71/0.865730.90/0.867331.07/0.8751
    下載: 導(dǎo)出CSV

    表  2  在Set14測試集上的測得的PSNR(dB)/ SSIM值

    放大因子BicubicA+SRCNNFSRCNNESPCN本文方法
    230.24/0.868832.28/0.905632.42/0.906332.63/0.908832.75/0.909833.34/0.9143
    327.55/0.774229.13/0.818829.28/0.820929.43/0.824229.49/0.827130.09/0.8512
    426.00/0.702727.32/0.749127.49/0.750327.59/0.753527.73/0.763728.26/0.7893
    下載: 導(dǎo)出CSV
  • THORNTON M W, ATKINSON P M, and HOLLAND D A. Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping[J]. International Journal of Remote Sensing, 2006, 27(3): 473–491. doi: 10.1080/01431160500207088
    PELED S and YESHURUN Y. Superresolution in MRI: Application to human white matter fiber tract visualization by diffusion tensor imaging[J]. Magnetic Resonance in Medicine, 2001, 45(1): 29–35. doi: 10.1002/1522-2594(200101)45
    ZOU W W W and YUEN P C. Very low resolution face recognition problem[J]. IEEE Transactions on Image Processing, 2012, 21(1): 327–340. doi: 10.1109/TIP.2011.2162423
    LU Huimin, LI Yujie, CHEN Min, et al. Brain intelligence: Go beyond artificial intelligence[J]. Mobile Networks and Applications, 2018, 23(2): 368–375. doi: 10.1007/s11036-017-0932-8
    KOCH M. Artificial intelligence is becoming natural[J]. Cell, 2018, 173(3): 531–533. doi: 10.1016/j.cell.2018.04.007
    LEO M, MEDIONI G, TRIVEDI M, et al. Computer vision for assistive technologies[J]. Computer Vision and Image Understanding, 2017, 154: 1–15. doi: 10.1016/j.cviu.2016.09.001
    ZHU Hong, TANG Xinming, XIE Junfeng, et al. Spatio-temporal super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement[J]. Sensors, 2018, 18(2): 498. doi: 10.3390/s18020498
    SHI Jun, LIU Qingping, WANG Chaofeng, et al. Super-resolution reconstruction of MR image with a novel residual learning network algorithm[J]. Physics in Medicine & Biology, 2018, 63(8): 085011. doi: 10.1088/1361-6560/aab9e9
    SU Heng, ZHOU Jie, and ZHANG Zhihao. Survey of super-resolution image reconstruction methods[J]. Acta Automatica Sinica, 2013, 39(8): 1202–1213. doi: 10.3724/SP.J.1004.2013.01202
    GRIBBON K T and BAILEY D G. A novel approach to real-time bilinear interpolation[C]. The 2nd IEEE International Workshop on Electronic Design, Test and Applications, Perth, Australia, 2004: 126–131. doi: 10.1109/DELTA.2004.10055.
    FRITSCH F N and CARLSON R E. Monotone piecewise cubic interpolation[J]. SIAM Journal on Numerical Analysis, 1980, 17(2): 238–246. doi: 10.1137/0717021
    STARK H and OSKOUI P. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America A, 1989, 6(11): 1715–1726. doi: 10.1364/JOSAA.6.001715
    PATANAVIJIT V and JITAPUNKUL S. An iterative super-resolution reconstruction of image sequences using fast affine block-based registration with BTV regularization[C]. Proceedings of 2006 IEEE Asia Pacific Conference on Circuits and Systems, Singapore, 2006: 1717–1720. doi: 10.1109/APCCAS.2006.342128.
    ZHOU Fei, YANG Wenming, and LIAO Qingmin. Interpolation-based image super-resolution using multisurface fitting[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3312–3318. doi: 10.1109/TIP.2012.2189576
    LIN Zhouchen and SHUM H Y. Fundamental limits of reconstruction-based superresolution algorithms under local translation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 83–97. doi: 10.1109/TPAMI.2004.1261081
    YOUNG T, HAZARIKA D, PORIA S, et al. Recent trends in deep learning based natural language processing[J]. IEEE Computational Intelligence Magazine, 2018, 13(3): 55–75. doi: 10.1109/MCI.2018.2840738
    KERMANY D S, GOLDBAUM M, CAI Wenjia, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122–1131.e9. doi: 10.1016/j.cell.2018.02.010
    DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281
    DONG Chao, LOY C C, and TANG Xiaoou. Accelerating the super-resolution convolutional neural network[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 391–407. doi: 10.1007/978-3-319-46475-6_25.
    KIM J, LEE J K, and LEE K M. Deeply-recursive convolutional network for image super-resolution[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1637–1645. doi: 10.1109/CVPR.2016.181.
    SHI Wenzhe, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1874–1883. doi: 10.1109/CVPR.2016.207.
    LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4681–4690. doi: 10.1109/CVPR.2017.19.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    KIM J, LEE J K, and LEE K M. Accurate image super-resolution using very deep convolutional networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1646–1654. doi: 10.1109/CVPR.2016.182.
    YUAN Fei, HUANG Lianfen, and YAO Yan. An improved PSNR algorithm for objective video quality evaluation[C]. 2007 Chinese Control Conference, Hunan, China, 2007: 376–380. doi: 10.1109/CHICC.2006.4347144.
    WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    GAO Shengkui and GRUEV V. Bilinear and bicubic interpolation methods for division of focal plane polarimeters[J]. Optics Express, 2011, 19(27): 26161–26173. doi: 10.1364/OE.19.026161
    TIMOFTE R, DE SMET V, and VAN GOOL L. A+: Adjusted anchored neighborhood regression for fast super-resolution[C]. The 12th Asian Conference on Computer Vision, Singapore, 2014: 111–126. doi: 10.1007/978-3-319-16817-3_8.
    ZEYDE R, ELAD M, and PROTTER M. On single image scale-up using sparse-representations[C]. The 7th International Conference on Curves and Surfaces, Avignon, France, 2010: 711–730. doi: 10.1007/978-3-642-27413-8_47.
  • 加載中
圖(6) / 表(2)
計量
  • 文章訪問數(shù):  3093
  • HTML全文瀏覽量:  1238
  • PDF下載量:  112
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-06-30
  • 網(wǎng)絡(luò)出版日期:  2019-07-19
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回