基于回聲狀態(tài)網(wǎng)絡的衛(wèi)星信道在線盲均衡算法
doi: 10.11999/JEIT190034
-
蘭州大學信息科學與工程學院 蘭州 730000
Online Blind Equalization Algorithm for Satellite Channel Based on Echo State Network
-
School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
-
摘要: 針對非線性衛(wèi)星信道,該文提出了兩種基于回聲狀態(tài)網(wǎng)絡(ESN)的在線盲均衡算法。利用ESN良好的非線性逼近能力,將發(fā)送信號的高階統(tǒng)計量(HOS)代入ESN,結(jié)合常模算法(CMA)和多模算法(MMA)構(gòu)造盲均衡的代價函數(shù),并采用遞歸最小二乘(RLS)算法對ESN輸出權(quán)值進行迭代尋優(yōu),實現(xiàn)了Volterra衛(wèi)星信道下常模和多模信號的在線盲均衡。實驗表明,該文算法可以有效降低非線性信道對發(fā)送信號產(chǎn)生的畸變,相較于傳統(tǒng)的Volterra濾波方法,有更快的收斂速度和更低的均方誤差值。
-
關(guān)鍵詞:
- Volterra衛(wèi)星信道 /
- 回聲狀態(tài)網(wǎng)絡 /
- 常模算法 /
- 多模算法 /
- 遞歸最小二乘算法
Abstract: Two online blind equalization algorithms based on Echo State Network (ESN) in this paper are proposed for the nonlinear satellite channel. These two algorithms take advantage of the good nonlinear approximation of ESN to bring the High-Order Statistics (HOS) of the transmitted signal into the ESN, and constructing cost function of blind equalization by combining Constant Modulus Algorithm (CMA) and Multi-Modulus Algorithm (MMA). Then, the Recursive Least Squares (RLS) algorithm is used to iteratively optimize the network output weights, and the online blind equalization of the constant modulus signals and the multi-modulus signals over the channel of Volterra satellite are realized. Experiments show that the proposed algorithms can effectively reduce the distortion of the transmitted signal by the nonlinear channel. Compared with the traditional Volterra filtering method, they have faster convergence speed and lower mean square error. -
表 1 ESN-RLS-CMA算法
步驟 1 ?均衡器初始化:隨機生成(${{\text{W}}_{{\rm{res}}}},{{\text{W}}_{{\rm{in}}}}$),初始化
${\text{u}}(0)$,${{\text{W}}_{{\rm{out}}}}$和$\lambda $; ${\text{P}}(0) = {\delta ^{ - 1}}{\text{I}}$($\delta $是一個很小的正數(shù));步驟 2 ?For:n=1, 2,···, N; ???(1) 更新儲備池狀態(tài):${\text{u}}(n) = f({{\text{W}}_{{\rm{res}}}}{\text{u}}(n - 1) + {{\text{W}}_{{\rm{in}}}}x(n))$; ? ??(2) 計算$y\left( n \right) = {{\text{W}}_{{\rm{out}}}}\left( {n - 1} \right){\text{u}}\left( n \right)$; ???(3) 由式(7)得到${\tilde{\text U}}(n,n)$,通過式(11)計算自相關(guān)矩陣${\text{P}}(n)$; ???(4) 按照式(12)更新ESN的輸出權(quán)值${{\text{W}}_{{\rm{out}}}}(n)$; ? ??(5) 根據(jù)文獻[14]的方法調(diào)整$\lambda $值。 ???End; 步驟 3 ?迭代直到網(wǎng)絡收斂為止。 下載: 導出CSV
表 2 ESN-RLS-MMA算法
步驟 1 ?均衡器初始化:隨機生成(${{\text{W}}_{{\rm{res}}}},{{\text{W}}_{{\rm{in}}}}$);初始化
${\text{u}}(0)$,${{\text{W}}_{{\rm{out}}}}$,$\lambda $($0 \ll \lambda < 1$),${{\hat{\text R}}^{ - 1}}(0){\rm{ = }}\delta {\text{I}}$($\delta $是一個很小的正
數(shù));設置$\gamma {\rm{ \!=\! }}3{\rm{E}} \{ s_{\rm{R}}^2(n)\} \!-\! {R_{{\rm{MMA}}}}$,門限值T=$3{\rm{E}}\{ {\left|\! {s(n)}\! \right|^2}\} $;步驟 2 ?For:n=1,2,···,N; ? ??(1) 更新儲備池狀態(tài):${\text{u}}(n) = f({{\text{W}}_{{\rm{res}}}}{\text{u}}(n - 1) + {{\text{W}}_{{\rm{in}}}}x(n))$; ? ??(2) 計算$y(n) = {{\text{W}}_{{\rm{out}}}}(n - 1){\text{u}}(n)$; ???(3) 通過式(30)計算${{\hat{\text R}}^{ - 1}}(n)$; ???(4) 計算:${d_{\rm{R}}}(n) = \left[ {\gamma + {R_{{\rm{MMA}}}} - y_{\rm{R}}^2(n)} \right]{y_{\rm{R}}}(n)$,
${d_{\rm{I}}}(n) = \left[ {\gamma + {R_{{\rm{MMA}}}} - y_{\rm{I}}^2(n)} \right]{y_{\rm{I}}}(n)$?? ???????????$d(n) = {\gamma ^{{\rm{ - }}1}}\left[ {{d_{\rm{R}}}(n) + j{d_{\rm{I}}}(n)} \right]$; ? ??(5) If ${\left| {y(n)} \right|^2}$>T; ??? ?????????$d(n) = 0$ ???? ????End; ? ??(6) 根據(jù)式(32)更新${{\text{W}}_{{\rm{out}}}}(n)$。 ?? ?End; 步驟 3 ?迭代直到網(wǎng)絡收斂為止。 下載: 導出CSV
表 3 取不同儲備池規(guī)模N時兩種算法的MSE值(dB)
算法 N=20 N=50 N=100 N=200 N=300 ESN-RLS-CMA –22.56 –28.12 –29.06 –28.41 –28.72 ESN-RLS-MMA –18.12 –29.58 –30.62 –29.10 –29.29 下載: 導出CSV
表 4 本文算法與5階Volterra濾波算法的運算復雜度對比
算法 運算復雜度 Volterra O(24M5+16M3+8M) ESN-RLS-CMA O(4N3+18N2+10N) ESN-RLS-MMA O(4N3+19N2+10N) 下載: 導出CSV
-
MELONI A and MURRONI M. On the genetic optimization of APSK constellations for satellite broadcasting[C]. 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Beijing, China, 2014: 1–6. doi: 10.1109/BMSB.2014.6873465. MOUSSA A, POULIQUEN M, FRIKEL M, et al. Blind equalisation in the presence of bounded noise[J]. IET Signal Processing, 2018, 12(8): 957–965. doi: 10.1049/iet-spr.2017.0445 孫海飛, 江樺. 非線性衛(wèi)星信道下的粒子濾波盲均衡方法[J]. 信號處理, 2015, 31(5): 587–593. doi: 10.3969/j.issn.1003-0530.2015.05.011SUN Haifei and JIANG Hua. Particle filtering blind equalization method in nonlinear satellite channel[J]. Journal of Signal Processing, 2015, 31(5): 587–593. doi: 10.3969/j.issn.1003-0530.2015.05.011 SéNéCAL S, AMBLARD P O, and CAVAZZANA L. Particle filtering equalization method for a satellite communication channel[J]. EURASIP Journal on Advances in Signal Processing, 2004, 2004: 591429. doi: 10.1155/S1110865704404090 MALONE J and WICKERT M A. Practical volterra equalizers for wideband satellite communications with TWTA nonlinearities[C]. 2011 Digital Signal Processing and Signal Processing Education Meeting, Sedona, USA, 2011: 481–53. doi: 10.1109/DSP-SPE.2011.5739185. 郭業(yè)才, 費賽男, 王惠. 基于多小波雙變換的非線性衛(wèi)星信道盲均衡算法[J]. 電子學報, 2016, 44(10): 2384–2390. doi: 10.3969/j.issn.0372-2112.2016.10.015GUO Yecai, FEI Sainan, and WANG Hui. Nonlinear satellite channel blind equalization algorithm based on multi-wavelet double transformation[J]. Acta Electronica Sinica, 2016, 44(10): 2384–2390. doi: 10.3969/j.issn.0372-2112.2016.10.015 BENVENUTO N, MARCHESI M, PIAZZA F, et al. Non linear satellite radio links equalized using blind neural networks[C]. 1991 International Conference on Acoustics, Speech, and Signal Processing, Toronto, Canada, 1991: 1521–1524. doi: 10.1109/ICASSP.1991.150526. LI Yanqin, GUO Chunsheng, ZHANG Zhen, et al. A novel feed-forward neural network blind equalization algorithm[C]. 2010 International Conference on Intelligent Control and Information Processing, Dalian, China, 2010: 404–408. doi: 10.1109/ICICIP.2010.5564245. 王貴銀. 復數(shù)Hopfield神經(jīng)網(wǎng)絡盲均衡QAM信號[J]. 電子測試, 2011(5): 57–60. doi: 10.3969/j.issn.1000-8519.2011.05.014WANG Guiyin. Blind equalization of QAM with a complex Hopfield neural network[J]. Electronic Test, 2011(5): 57–60. doi: 10.3969/j.issn.1000-8519.2011.05.014 RUAN Xiukai, LI Chang, YANG Weibo, et al. Blind sequence detection using reservoir computing[J]. Digital Signal Processing, 2017, 62: 81–90. doi: 10.1016/j.dsp.2016.10.012 ZORN S, EHM H J, and WEIGEL R. A novel technique for determining kernels of volterra based behavioral models for RF amplifiers[C]. The 38th European Microwave Conference, Amsterdam, Netherlands, 2008: 246–249. doi: 10.1109/EUMC.2008.4751434. 唐成凱, 張玲玲, 廉保旺. 衛(wèi)星高階調(diào)制信號通信下非線性誤差修正均衡方法[J]. 通信學報, 2017, 38(1): 117–125. doi: 10.11959/j.issn.1000-436x.2017014TANG Chengkai, ZHANG Lingling, and LIAN Baowang. Nonlinear error modified equalization algorithm in high-order modulation of satellite communication[J]. Journal of Communications, 2017, 38(1): 117–125. doi: 10.11959/j.issn.1000-436x.2017014 ZHOU Haowen, HUANG Jinquan, LU Feng, et al. Echo state kernel recursive least squares algorithm for machine condition prediction[J]. Mechanical Systems and Signal Processing, 2018, 111: 68–86. doi: 10.1016/j.ymssp.2018.03.047 PARK D J, JUN B E, and KIM J H. Fast tracking RLS algorithm using novel variable forgetting factor with unity zone[J]. Electronics Letters, 1991, 27(23): 2150–2151. doi: 10.1049/el:19911331 李進, 馮大政, 劉文娟. 快速Q(mào)AM信號多模盲均衡算法[J]. 電子與信息學報, 2013, 35(2): 273–279. doi: 10.3724/SP.J.1146.2012.00609LI Jin, FENG Dazheng, and LIU Wenjuan. A fast multimodulus blind equalization algorithm for QAM signal[J]. Journal of Electronics &Information Technology, 2013, 35(2): 273–279. doi: 10.3724/SP.J.1146.2012.00609 PAVAN F R M, SILVA M T M, and MIRANDA M D. A numerically robust blind equalization scheme applied to MIMO communication systems[J]. Journal of the Franklin Institute, 2018, 355(1): 596–624. doi: 10.1016/j.jfranklin.2017.10.036 MBOUP M and REGALIA P A. A gradient search interpretation of the super-exponential algorithm[J]. IEEE Transactions on Information Theory, 2000, 46(7): 2731–2734. doi: 10.1109/18.887889 MIRANDA M D, SILVA M T M, and NASCIMENTO V H. Avoiding divergence in the shalvi-weinstein algorithm[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5403–5413. doi: 10.1109/TSP.2008.928505 -