一種快速穩(wěn)健的致密焦面陣列饋源設(shè)計(jì)方法
doi: 10.11999/JEIT190026
-
1.
安徽工業(yè)大學(xué)電氣與信息工程學(xué)院 ??馬鞍山 ??243002
-
2.
中國(guó)科學(xué)院國(guó)家天文臺(tái)FAST項(xiàng)目組 ??北京 ??100012
-
3.
南京理工大學(xué)通信工程系 ??南京 ??210094
A Fast and Robust Design Method for Dense Focal Plane Array Feed
-
1.
School of Electrical Engineering & Information, Anhui University of Technology, Ma’anshan 243002, China
-
2.
Department of FAST in the National Astronomy Observatory, Chinese Academy of Sciences, Beijing 100012, China
-
3.
Department of Communication Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
-
摘要: 致密焦面陣列饋源(DFPAF)融合了多喇叭多波束饋源和相控陣列饋源(PAF)的特點(diǎn),與多喇叭多波束饋源和常規(guī)相控陣列饋源相比較,它可以同時(shí)提供更多的固定賦形波束進(jìn)一步拓寬視場(chǎng)。在射電天文、雷達(dá)、電子偵察和衛(wèi)星通信等領(lǐng)域引起了極大的關(guān)注。由于其陣列結(jié)構(gòu)與常規(guī)陣列饋源不同,導(dǎo)致設(shè)計(jì)方法也具有特殊性,因此近年來(lái)展開(kāi)了對(duì)其設(shè)計(jì)方法的研究。該文充分利用反射面天線(xiàn)的固有特性,并結(jié)合陣列天線(xiàn)理論,提出一種可以快速、穩(wěn)健地設(shè)計(jì)致密焦面陣列饋源的方法,給出了設(shè)計(jì)原理和設(shè)計(jì)結(jié)果,并和最具代表性的多喇叭多波束饋源進(jìn)行了性能對(duì)比分析,為設(shè)計(jì)致密焦面陣列饋電的大型反射面提供理論和數(shù)據(jù)參考。Abstract: The Dense Focal Plane Array Feed (DFPAF), which integrates the characters of multi-beam feed with multiple independent horns and Phased Array Feed (PAF), can simultaneously provide more fixed shaped beams and wider field of view than multi-beam feed with multiple independent horns and PAF. It attracts more attention in radio telescope, radar, electronic reconnaissance, satellite communication and so on. Its unique structure promotes the studies on special design method recently. Combing the theory of array antenna and inherent characteristic of parabolic reflector antenna, a fast design method with robust processing procedure is proposed in this paper. The design principle, calculated results, and comparison between DFPAF and the most representative multi-beam feed with multiple independent horns are presented. All these provide a theoretical basis and reference data for the design of giant reflector with DFPAF.
-
Key words:
- Dense focal plane array /
- Multi-beam feed /
- Reflector /
- Phased array
-
表 1 多波束反射面天線(xiàn)性能總結(jié)表
波束 饋源類(lèi)型 天線(xiàn)增益(dB) 天線(xiàn)效率(%) 第1旁瓣電平(dB) 半功率波束寬度(°) 波束指向(°) 與中心波束的增益差(dB) 1號(hào)1.05 GHz 焦面場(chǎng) 75.08 74.00 –17.10 0.0596 0.000 0.00 多喇叭多波束饋源 74.46 64.15 –24.10 0.0612 0.000 0.00 致密焦面陣列饋源 74.98 72.32 –17.60 0.0606 0.000 0.00 5號(hào)1.05 GHz 焦面場(chǎng) 75.01 72.82 –16.40 0.0600 –0.045 –0.07 多喇叭多波束饋源 74.38 62.97 –19.90 0.0616 –0.045 –0.08 致密焦面陣列饋源 74.94 71.66 –16.10 0.0616 –0.045 –0.04 14號(hào)1.05 GHz 焦面場(chǎng) 74.92 71.32 –16.50 0.0599 –0.090 –0.16 多喇叭多波束饋源 74.20 60.47 –17.60 0.0619 –0.090 –0.26 致密焦面陣列饋源 74.74 68.43 –20.20 0.0622 –0.090 –0.24 29號(hào)1.05 GHz 焦面場(chǎng) 74.81 69.54 –16.40 0.0598 –0.140 –0.27 多喇叭多波束饋源 74.00 57.70 –15.40 0.0622 –0.140 –0.46 致密焦面陣列饋源 74.61 66.41 –17.10 0.0619 –0.140 –0.37 50號(hào)1.05 GHz 焦面場(chǎng) 74.58 65.95 –15.60 0.0617 –0.180 –0.50 多喇叭多波束饋源 73.78 54.91 –13.50 0.0626 –0.185 –0.68 致密焦面陣列饋源 74.42 63.57 –15.30 0.0626 –0.180 –0.56 1號(hào)1.25 GHz 焦面場(chǎng) 76.67 75.46 –16.90 0.0500 0.000 0.00 多喇叭多波束饋源 76.18 67.29 –26.80 0.0527 0.000 0.00 致密焦面陣列饋源 76.62 74.42 –19.10 0.0514 0.000 0.00 5號(hào)1.25 GHz 焦面場(chǎng) 76.57 73.66 –17.10 0.0500 –0.045 –0.10 多喇叭多波束饋源 76.05 65.34 –21.50 0.0530 –0.045 –0.12 致密焦面陣列饋源 76.55 73.36 –18.40 0.0519 –0.045 –0.06 14號(hào)1.25 GHz 焦面場(chǎng) 76.46 71.80 –16.20 0.0502 –0.090 –0.21 多喇叭多波束饋源 75.84 62.31 –17.20 0.0542 –0.090 –0.33 致密焦面陣列饋源 76.25 68.37 –18.60 0.0529 –0.090 –0.36 29號(hào)1.25 GHz 焦面場(chǎng) 76.33 69.67 –16.10 0.0505 –0.140 –0.34 多喇叭多波束饋源 75.60 58.97 –15.00 0.0538 –0.140 –0.57 致密焦面陣列饋源 76.20 67.66 –19.20 0.0526 –0.135 –0.41 50號(hào)1.25 GHz 焦面場(chǎng) 76.13 66.50 –15.70 0.0512 –0.180 –0.54 多喇叭多波束饋源 75.29 54.86 –13.00 0.0548 –0.185 –0.88 致密焦面陣列饋源 75.97 64.17 –15.80 0.0535 –0.185 –0.64 1號(hào)1.45 GHz 焦面場(chǎng) 78.06 77.07 –16.70 0.0426 0.000 0.00 多喇叭多波束饋源 77.52 68.06 –30.60 0.0468 0.000 0.00 致密焦面陣列饋源 78.01 76.19 –19.90 0.0440 0.000 0.00 5號(hào)1.45 GHz 焦面場(chǎng) 77.97 75.49 –16.60 0.0426 –0.045 –0.09 多喇叭多波束饋源 77.39 66.05 –21.60 0.0470 –0.045 –0.13 致密焦面陣列饋源 77.90 74.28 –18.80 0.0437 –0.045 –0.11 14號(hào)1.45 GHz 焦面場(chǎng) 77.85 73.43 –16.20 0.0427 –0.095 –0.21 多喇叭多波束饋源 77.16 62.64 –17.20 0.0480 –0.095 –0.35 致密焦面陣列饋源 77.64 69.96 –20.10 0.0456 –0.095 –0.37 29號(hào)1.45 GHz 焦面場(chǎng) 77.67 70.45 –16.50 0.0488 –0.140 –0.39 多喇叭多波束饋源 76.86 58.46 –15.00 0.0486 –0.140 –0.65 致密焦面陣列饋源 77.49 67.59 –17.50 0.0445 –0.140 –0.52 50號(hào)1.45 GHz 焦面場(chǎng) 77.43 66.66 –16.00 0.0439 –0.185 –0.63 多喇叭多波束饋源 76.44 53.07 –12.80 0.0499 –0.185 –1.07 致密焦面陣列饋源 77.22 63.52 –13.70 0.0465 –0.180 –0.79 下載: 導(dǎo)出CSV
-
CHEN Yang, MENG Hongfu, GAN Yu, et al. Millimeter wave multi-beam reflector antenna[C]. 2018 International Workshop on Antenna Technology, Nanjing, China, 2018: 1–3. doi: 10.1109/IWAT.2018.8379140. MANOOCHEHRI O, EMADEDDIN A, DARVAZEHBAN A, et al. A new method for designing high efficiency multi feed multi beam reflector antennas[C]. 2017 International Conference on Electromagnetics in Advanced Applications, Verona, Italy, 2017: 551–554. doi: 10.1109/ICEAA.2017.8065304. ANGEVAIN J C, FONSECA N, SCHOBERT D, et al. Multibeam reflector antennas for space applications: Current trends and future perspectives in Europe[C]. The 12th European Conference on Antennas and Propagation, London, UK, 2018: 1–5. doi: 10.1049/cp.2018.0804. HE Shanhong, LI Wenkai, LU Xiaojia, et al. Predicting influence of the rest spherical surface on the instantaneous parabolic surface of multi-beam for radio astronomy[C]. 2018 IEEE MTT-S international wireless symposium, Chengdu, China, 2018: 1–3. doi: 10.1109/IEEE-IWS.2018.8400911. SMITH S L, DUNNING A, SMART K W, et al. Performance validation of the 19-element multibeam feed for the five-hundred-metre aperture spherical radio telescope[C]. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017: 2137–2138. DUNNING A, BOWEN M, CASTILLO S, et al. Design and laboratory testing of the five hundred meter aperture spherical telescope (FAST) 19 beam L-band receiver[C]. The 2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, Montreal, Canada, 2017. doi: 10.23919/URSIGASS.2017.8105012. LIU Lei and GRAINGE K. Realization of phased arrays for reflector observing systems[C]. The 2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, Montreal, Canada, 2017. doi: 10.23919/URSIGASS.2017.8105014. HUT B, VAN DEN BRINK R H, and VAN CAPPELLEN W A. Status update on the system validation of APERTIF, the phased array feed system for the westerbork synthesis radio telescope[C]. The 2017 11th European Conference on Antennas and Propagation, Paris, France, 2017: 1960–1961. doi: 10.23919/EuCAP.2017.7928787. WU Yang, WARNICK K F, and JIN Chengjin. Design study of an L-band phased array feed for wide-field surveys and vibration compensation on FAST[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3026–3033. doi: 10.1109/TAP.2013.2254438 IVASHINA M V, KEHN M N M, KILDAL P S, et al. Control of reflection and mutual coupling losses in maximizing efficiency of dense focal plane arrays[C]. The 20061st European Conference on Antennas and Propagation, Nice, France, 2006: 1–6. doi: 10.1109/EUCAP.2006.4585045. IVASHINA M and VAN ARDENNE J D B A. A way to improve the field of view of the radiotelescope with a dense focal plane array[C]. The 12th International Conference Microwave and Telecommunication Technology, Sevastopol, Ukraine, 2002: 278–281. doi: 10.1109/CRMICO.2002.1137238. IVASHINA M and BREGMAN J. Experimental synthesis of a feed pattern with a dense focal plane array[C]. The 200232nd European Microwave Conference, Milan, Italy, 2002: 1–4. doi: 10.1109/EUMA.2002.339456. SHI Wei, ZHANG Quansheng, and DU Hui. Quantum particle swarm optimization for integer programming of phased array feeds[C]. 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 2010: 1386–1389. doi: 10.1109/ICMMT.2010.5524774. CHANG D C, HU C N, HUNG C I, et al. Pattern synthesis of the offset reflector antenna system with less complicated phased array feed[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(2): 240–245. doi: 10.1109/8.277218 TANAKA S, YAMADA T, MURATA T, et al. A study on pattern synthesis method for array-fed reflector antenna for advanced direct broadcasting satellites[C]. 2001 IEEE Antennas and Propagation Society International Symposium, Boston, USA, 2001: 566–569. doi: 10.1109/APS.2001.958916. SAKA B and YAZGAN E. Pattern optimization of a reflector antenna with planar-array feeds and cluster feeds[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(1): 93–97. doi: 10.1109/8.554245 WHITE W D. Circular aperture distribution functions[J]. IEEE Transactions on Antennas and Propagation, 1977, 25(5): 714–716. doi: 10.1109/TAP.1977.1141672 SKULKIN S P, TURCHIN V I, KASCHEEV N I, et al. Transient field calculation of aperture antennas for various field distributions over the aperture[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2295–2298. doi: 10.1109/LAWP.2017.2715323 DUAN D W and RAHMAT-SAMII Y. A generalized three-parameter (3-P) aperture distribution for antenna applications[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(6): 697–713. doi: 10.1109/8.144605 IUPIKOV O A, IVASHINA M V, SKOU N, et al. Multibeam focal plane arrays with digital beamforming for high precision space-borne ocean remote sensing[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(2): 737–748. doi: 10.1109/TAP.2017.2763174 ELMER M, JEFFS B D, WARNICK K F, et al. Beamformer design methods for radio astronomical phased array feeds[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 903–914. doi: 10.1109/TAP.2011.2173143 CHIPPENDALE A P, MCCONNELL D, BANNISTER K, et al. Recent developments in measuring signal and noise in phased array feeds at CSIRO[C]. The 201610th European Conference on Antennas and Propagation, Davos, Switzerland, 2016: 1–5. doi: 10.1109/EuCAP.2016.7481741. -