改進(jìn)射線描跡的低仰角散射斜延遲實(shí)時(shí)估計(jì)
doi: 10.11999/JEIT190014
-
1.
西北核技術(shù)研究所 西安 710024
-
2.
空軍工程大學(xué)防空反導(dǎo)學(xué)院 西安 710051
Real-time Estimation of Tropospheric Scattering Slant Delay of Low-elevation Obtained by Improved Ray Tracing
-
1.
Northwest Institute of Nuclear Technology, Xi’an 710024, China
-
2.
Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
-
摘要: 針對(duì)任意測站的對(duì)流層散射斜延遲估算時(shí)存在探空氣象數(shù)據(jù)不易實(shí)時(shí)獲取的不足,該文提出一種利用地面氣象參數(shù)內(nèi)插改進(jìn)射線描跡計(jì)算公式的對(duì)流層散射斜延遲估計(jì)算法。該算法利用中緯度大氣氣象參數(shù)公式推導(dǎo)了折射指數(shù)隨地心距變化的關(guān)系式,并采用氣象參數(shù)內(nèi)插方法獲取溫度變化率和水汽壓變化率,克服了射線描跡法對(duì)探空數(shù)據(jù)的依賴。根據(jù)亞洲地區(qū)6個(gè)國際GPS服務(wù)(IGS)測站2012年的實(shí)測氣象數(shù)據(jù),驗(yàn)證了該文算法解算天頂延遲年平均偏差的絕對(duì)值在1 cm以內(nèi);選取基線距離適宜的3個(gè)測站分成3組散射通信比對(duì)站,利用射線描跡法計(jì)算了其在0°~5°入射角下全年的斜延遲,結(jié)果表明,3組比對(duì)站進(jìn)行單向傳輸?shù)淖畲笮毖舆t為17.03~33.10 m;進(jìn)行雙向時(shí)間比對(duì)相互抵消95%時(shí),時(shí)間延遲為2.88~5.52 ns。
-
關(guān)鍵詞:
- 對(duì)流層散射 /
- 斜延遲 /
- 射線描跡法 /
- 折射指數(shù)
Abstract: Considering the disadvantage of oblique delay estimation of tropospheric scattering at arbitrary stations, which is difficult to obtain real-time sounding meteorological data, an oblique delay estimation algorithm of tropospheric scattering based on improved ray tracing method with ground meteorological parameters is proposed. In order to get rid of the method’s dependence on radiosonde data, the algorithm infers the relationship between refractive index and altitude through the formula of meteorological parameters in the model of medium latitude atmosphere. The interpolation of meteorological parameters in the model of UNB3m is used to gain the coefficient of temperature and water vapor pressure. Meteorological data for 2012 from 6 International GNSS Service (IGS) stations in Asia are selected to test the applicability of new method, the results suggest that precision is less than 1 cm. Then, the tropospheric slant delays of three parts observation stations under different angles of incidence (0°~5°) are calculated by the modified algorithm. The results suggest that the maximum delay is 17.03~33.10 m in a single way time transfer. In two way time transfer, when the delay can counteract 95%, time delay is 2.88~5.52 ns.-
Key words:
- Tropospheric scatter /
- Slant propagation delay /
- Ray tracing /
- Refractive index
-
表 1 氣象參數(shù)格網(wǎng)值
$F{(^ \circ })$ avg amp $\beta $ $\lambda $ $\beta $ $\lambda $ 15 0.00630 2.77 0.000 0.000 30 0.00605 3.51 0.00025 0.33 45 0.00558 2.57 0.00032 0.46 60 0.00539 1.81 0.00081 0.74 75 0.00453 1.55 0.00062 0.30 下載: 導(dǎo)出CSV
表 2 測站信息
站名 北緯($^\circ $) 東經(jīng)($^\circ $) 海拔(m) TSKB 36.11 140.09 67.30 KSMV 35.96 140.66 57.93 KGNI 35.71 139.49 123.50 BJFS 39.36 115.53 54.70 WUHN 30.31 114.21 27.00 TWTF 24.95 121.16 203.10 下載: 導(dǎo)出CSV
表 3 各模型統(tǒng)計(jì)結(jié)果(cm)
測站 UNB3m模型 EGNOS模型 本文算法 平均偏差 RMS 平均偏差 RMS 平均偏差 RMS TSKB –0.69 8.57 0.63 8.64 –0.70 7.57 KSMV –0.60 8.44 0.77 8.53 –0.77 7.93 KGNI –0.67 7.80 0.79 7.89 –0.69 7.41 BJFS –0.53 7.65 0.72 8.23 –0.56 7.32 WUHN –0.59 7.53 0.66 8.44 –0.66 7.44 TWTF –0.80 8.62 0.78 8.65 –0.79 7.85 下載: 導(dǎo)出CSV
表 4 比對(duì)站情況表
比對(duì)站 A&B A&C B&C L(km) 53.96 70.06 109.19 ${\theta _0}$($^\circ $) $[0, 5)$ $[0, 5)$ $[0, 5)$ 下載: 導(dǎo)出CSV
-
PAN Minghai, HAN Qinghua, GONG Shufeng, et al. Impacts of space-time-frequency synchronization errors onwideband target echo characteristics of bistatic/multistatic radar[J]. Journal of Systems Engineering and Electronics, 2016, 27(3): 562–573. doi: 10.1109/JSEE.2016.00060 萬顯榮, 孫緒望, 易建新, 等. 分布式數(shù)字廣播電視外輻射源雷達(dá)系統(tǒng)同步設(shè)計(jì)與測試[J]. 雷達(dá)學(xué)報(bào), 2017, 6(1): 65–72. doi: 10.12000/JR16134WAN Xianrong, SUN Xuwang, YI Jianxin, et al. Synchronous design and test of distributed passive radar systems based on digital broadcasting and television[J]. Journal of Radars, 2017, 6(1): 65–72. doi: 10.12000/JR16134 WANG Zhengbo, ZHAO Lu, WANG Shiguang, et al. COMPASS time synchronization and dissemination-Toward centimetre positioning accuracy[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(9): 1788–1804. doi: 10.1007/s11433-014-5508-z CHEN Xihong, LIU Qiang, HU Denghua, et al. Delay analysis of two way time transfer based on troposphere gradients[C]. The 10th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, 2014: 543–547. HUANG Yijun, FUJIEDA M, TAKIGUCHI H, et al. Stability improvement of an operational two-way satellite time and frequency transfer system[J]. Metrologia, 2016, 53(2): 881–890. doi: 10.1088/0026-1394/53/2/881 SLIWCZYNSKI L, KREHLIK P, KOLODZIEJ J, et al. Fiber-optic time transfer for UTC-traceable synchronization for telecom networks[J]. IEEE Communications Standards Magazine, 2017, 1(1): 66–73. doi: 10.1109/MCOMSTD.2017.1600766ST 劉強(qiáng), 陳西宏, 薛倫生, 等. 基于映射函數(shù)的對(duì)流層雙向時(shí)間比對(duì)斜延遲分析[J]. 電子科技大學(xué)學(xué)報(bào), 2015, 44(5): 689–694. doi: 10.3969/j.issn.1001-0548.2015.05.009LIU Qiang, CHEN Xihong, XUE Lunsheng, et al. Slant propagation delay analysis in two way troposphere transfer based on mapping function[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(5): 689–694. doi: 10.3969/j.issn.1001-0548.2015.05.009 王紅光, 吳振森, 朱慶林. 大氣折射對(duì)雷達(dá)低仰角跟蹤誤差的影響分析[J]. 電子與信息學(xué)報(bào), 2012, 34(8): 1893–1896. doi: 10.3724/SP.J.1146.2011.01186WANG Hongguang, WU Zhensen, and ZHU Qinglin. Influence analysis of atmospheric refraction on low-angle radar tracking errors[J]. Journal of Electronics &Information Technology, 2012, 34(8): 1893–1896. doi: 10.3724/SP.J.1146.2011.01186 喬江, 杜曉燕, 衛(wèi)佩佩. 一種對(duì)流層折射誤差的實(shí)時(shí)簡化修正方法[J]. 強(qiáng)激光與粒子束, 2018, 30(10): 103205. doi: 10.11884/HPLPB201830.180146QIAO Jiang, DU Xiaoyan, and WEI Peipei. Real-time simplified correction method for tropospheric refraction error[J]. High Power Laser and Particle Beams, 2018, 30(10): 103205. doi: 10.11884/HPLPB201830.180146 吳文溢, 陳西宏, 劉少偉. 低仰角對(duì)流層散射斜延遲實(shí)時(shí)估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2017, 39(6): 1326–1332. doi: 10.11999/JEIT160776WU Wenyi, CHEN Xihong, and LIU Shaowei. Real-time estimation method for tropospheric scatter slant delay at low elevation[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1326–1332. doi: 10.11999/JEIT160776 衛(wèi)佩佩, 杜曉燕, 江長蔭. 基于射線描跡法微分形式的大氣折射誤差修正方法研究[J]. 電子與信息學(xué)報(bào), 2018, 40(8): 1838–1846. doi: 10.11999/JEIT171131WEI Peipei, DU Xiaoyan, and JIANG Changyin. Atmosphere refractive error correction method based on ray tracing differential form[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1838–1846. doi: 10.11999/JEIT171131 陳西宏, 劉贊, 劉繼業(yè), 等. 低仰角下對(duì)流層散射斜延遲估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2016, 38(2): 408–412. doi: 10.11999/JEIT150628CHEN Xihong, LIU Zan, LIU Jiye, et al. Estimating tropospheric slant scatter delay at low elevation[J]. Journal of Electronics &Information Technology, 2016, 38(2): 408–412. doi: 10.11999/JEIT150628 劉繼業(yè), 陳西宏, 劉贊. 對(duì)流層散射雙向時(shí)間比對(duì)中對(duì)流層斜延遲實(shí)時(shí)估計(jì)[J]. 電子與信息學(xué)報(bào), 2018, 40(3): 587–593. doi: 10.11999/JEIT170581LIU Jiye, CHEN Xihong, and LIU Zan. Real-time estimation of tropospheric slant delay in two-way troposphere time transfer[J]. Journal of Electronics &Information Technology, 2018, 40(3): 587–593. doi: 10.11999/JEIT170581 衛(wèi)佩佩, 杜曉燕, 江長蔭. 對(duì)流層散射超視距信道傳輸損耗快慢衰落特性研究[J]. 電子與信息學(xué)報(bào), 2018, 40(7): 1745–1751. doi: 10.11999/JEIT170952WEI Peipei, DU Xiaoyan, and JIANG Changyin. Study on tropospheric scatter beyond-line-of-sight channel transmission loss for short-term and long-term fading[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1745–1751. doi: 10.11999/JEIT170952 ERIKSSON D, MACMILLAN D S, and GIPSON J M. Tropospheric delay ray tracing applied in VLBI analysis[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(12): 9156–9170. doi: 10.1002/2014JB011552 LEANDRO R F, LANGLEY R B, and SANTOS M C. UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques[J]. GPS Solutions, 2008, 12(1): 65–70. doi: 10.1007/s10291-007-0077-5 孔建, 姚宜斌, 單路路, 等. GPT2w模型在南極地區(qū)精度分析[J]. 測繪學(xué)報(bào), 2018, 47(10): 1316–1325. doi: 10.11947/j.AGCS.2018.20170487KONG Jian, YAO Yibin, SHAN Lulu, et al. The accuracy analysis of GPT2w at the Antarctic area[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10): 1316–1325. doi: 10.11947/j.AGCS.2018.20170487 姚宜斌, 徐星宇, 胡羽豐. GGOS對(duì)流層延遲產(chǎn)品精度分析及在PPP中的應(yīng)用[J]. 測繪學(xué)報(bào), 2017, 46(3): 278–287. doi: 10.11947/j.AGCS.2017.20160383YAO Yibin, XU Xingyu, and HU Yufeng. Precision analysis of GGOS tropospheric delay Product and its application in PPP[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 278–287. doi: 10.11947/j.AGCS.2017.20160383 -