一種捷變頻聯(lián)合Hough變換的抗密集假目標干擾算法
doi: 10.11999/JEIT190010
-
1.
西安電子科技大學雷達信號處理國家重點實驗室 西安 710071
-
2.
西安電子工程研究所 西安 710100
An Anti-Dense False Target Jamming Algorithm Based on Agile Frequency Joint Hough Transform
-
1.
National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
2.
Xi’an Electronic Engineering Research Institute, Xi’an 710100, China
-
摘要: 轉(zhuǎn)發(fā)式密集假目標干擾通過在距離維上產(chǎn)生多個虛假目標,擾亂雷達對真實目標的檢測與識別。由于虛假回波信號與真實信號高度相關(guān),雷達很難對其進行有效識別和抑制。而捷變頻雷達通過隨機改變發(fā)射相鄰脈沖的載頻,大大提高了雷達的低截獲和抗干擾能力。但是捷變頻雷達不能完全消除干擾,部分目標回波脈沖可能被干擾淹沒,無法很好地完成相參積累和目標檢測。針對上述問題,該文提出捷變頻聯(lián)合Hough變換的抗干擾方法,首先利用脈間頻率捷變技術(shù)規(guī)避大部分窄帶瞄準和欺騙式干擾;然后針對干擾信號時間上的不連續(xù)特性,通過Hough變換和峰值提取進行干擾識別與抑制;最終,針對捷變頻與傳統(tǒng)動目標檢測(MTD)不兼容問題,通過稀疏重構(gòu)完成目標的檢測。仿真與實際雷達和干擾機對抗實驗表明,該方法可以獲得良好的抗干擾性能和目標檢測性能。Abstract: Forwarding dense false target jamming disturbs the detection and recognition of real targets by generating multiple false targets in the range dimension. Because the false echo signal is highly correlated with the real signal, it is difficult for radar to recognize and suppress it effectively. Frequency agile radar improves greatly the low interception and anti-jamming ability of radar by randomly changing the carrier frequency of transmitting adjacent pulses. However, agile radar can not completely eliminate the interference, some target echo pulses may be submerged by the interference, agile radar can not complete coherent accumulation and target detection well either. To solve the above problems, an anti-jamming method of frequency agility combined with Hough transform is proposed. Firstly, the inter-pulse frequency agility technology is used to avoid most narrowband aiming and deceptive jamming. Then, according to the time discontinuity of the jamming signal, Hough transform and peak extraction are used to identify and suppress the jamming. Frequency agility is incompatible with the traditional Moving Target Detection(MTD). Target detection is accomplished by sparse reconstruction. The simulation and actual radar and jammer countermeasure experiments show that the proposed method can achieve good anti-jamming performance and target detection performance.
-
表 1 雷達工作及目標參數(shù)
指標參數(shù) 取值 指標參數(shù) 取值 脈沖寬度 4 μs 脈沖重復頻率 2.5 kHz 信號帶寬 24 MHz 采樣頻率 48 MHz 脈沖組個數(shù) 64 個 初始載頻 10 GHz 跳頻總數(shù) 100 個 步進帶寬 20 MHz 目標距離 4 km 目標速度 2 km/s 下載: 導出CSV
-
SHI Xiaoran, ZHOU Feng, ZHAO Bo, et al. Deception jamming method based on micro-Doppler effect for vehicle target[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1071–1079. doi: 10.1049/iet-rsn.2015.0371 FENG Dejun, XU Letao, PAN Xiaoyi, et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1341–1354. doi: 10.1109/TAES.2017.2670958 ZHOU Chang, TANG Ziyue, DAI Yu, et al. Anti-intermittent sampling repeater jamming method based on convex optimization techniques[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059595. 馮德軍, 王俊杰, 王俊卿. 移頻導前假目標的特性分析及其鑒別方法[J]. 雷達學報, 2017, 6(4): 325–331. doi: 10.12000/JR17026FENG Dejun, WANG Junjie, and WANG Junqing. Signature analysis and discrimination method of preceded Frequency-shift false target[J]. Journal of Radars, 2017, 6(4): 325–331. doi: 10.12000/JR17026 SOUMEKH M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 191–205. doi: 10.1109/TAES.2006.1603414 ZHANG Shuning, XIE Wei, ZHU Hang, et al. Combined eigenvector analysis and independent component analysis for multi-component periodic interferences suppression in PRCPM-PD detection system[J]. IEEE Access, 2017, 5: 12552–12562. doi: 10.1109/ACCESS.2017.2720589 MUSUMECI L, CURRAN J T, and DOVIS F. A comparative analysis of adaptive notch filtering and wavelet mitigation against jammers interference[J]. Navigation, 2016, 63(4): 533–550. doi: 10.1002/navi.167 SHEN Hao and PAPANDREOU-SUPPAPPOLA A. Wideband time-varying interference suppression using matched signal transforms[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2607–2612. doi: 10.1109/TSP.2005.849218 WANG Dinghe, BAO Qinglong, NIU Zhaodong, et al. Long time coherent integration method for frequency agile radar[C]. The 11th European Radar Conference, Rome, Italy, 2014: 553–556. doi: 10.1109/EuRAD.2014.6991330. QUAN Yinghui, WU Yaojun, LI Yachao, et al. Range-Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 348–352. doi: 10.1049/iet-rsn.2017.0421 盧剛, 唐斌, 羅雙才, 等. LFM雷達中DRFM假目標自適應對消方法[J]. 系統(tǒng)工程與電子技術(shù), 2011, 33(8): 1760–1764. doi: 10.3969/j.issn.1001-506X.2011.08.16LU Gang, TANG Bin, LUO Shuangcai, et al. Adaptive cancellation of DRFM false targets for LFM radar[J]. Systems Engineering and Electronics, 2011, 33(8): 1760–1764. doi: 10.3969/j.issn.1001-506X.2011.08.16 孫豐榮, 劉積仁. 快速霍夫變換算法[J]. 計算機學報, 2001, 24(10): 1102–1109. doi: 10.3321/j.issn:0254-4164.2001.10.013SUN Fengrong and LIU Jiren. Fast Hough transform algorithm[J]. Chinese Journal of Computers, 2001, 24(10): 1102–1109. doi: 10.3321/j.issn:0254-4164.2001.10.013 劉向陽, 楊君剛, 孟進, 等. 低信噪比下基于Hough變換的前視陣列SAR稀疏三維成像[J]. 雷達學報, 2017, 6(3): 316–323. doi: 10.12000/JR17011LIU Xiangyang, YANG Jungang, MENG Jin, et al. Sparse Three-dimensional imaging based on hough transform for Forward-looking array SAR in low SNR[J]. Journal of Radars, 2017, 6(3): 316–323. doi: 10.12000/JR17011 STEIN J J and BLACKMAN S S. Generalized correlation of multi-target track data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1975, AES-11(6): 1207–1217. doi: 10.1109/TAES.1975.308178 QUAN Yinghui, LI Yachao, WU Yaojun, et al. Moving target detection for frequency agility radar by sparse reconstruction[J]. Review of Scientific Instruments, 2016, 87(9): 094703. doi: 10.1063/1.4962700 HUANG Tianyao, LIU Yimin, MENG Huadong, et al. Randomized step frequency radar with adaptive compressed sensing[C]. 2011 IEEE RadarCon, Kansas City, USA, 2011: 411–414. doi: 10.1109/RADAR.2011.5960571. 陳小龍, 關(guān)鍵, 何友, 等. 高分辨稀疏表示及其在雷達動目標檢測中的應用[J]. 雷達學報, 2017, 6(3): 239–251. doi: 10.12000/JR16110CHEN Xiaolong, GUAN Jian, HE You, et al. Sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. doi: 10.12000/JR16110 MARQUES E C, MACIEL N, NAVINER L, et al. A review of sparse recovery algorithms[J]. IEEE Access, 2019, 7: 1300–1322. doi: 10.1109/ACCESS.2018.2886471 -