一種低副瓣無混疊的線性調(diào)頻信號時頻分析方法
doi: 10.11999/JEIT181190
-
1.
中國科學(xué)院微小衛(wèi)星創(chuàng)新研究院 上海 201203
-
2.
中國科學(xué)院上海微系統(tǒng)與信息技術(shù)研究所 上海 200050
-
3.
中國科學(xué)院大學(xué) 北京 100049
A Time-frequency Analysis Method for Linear Frequency Modulation Signal with Low Sidelobe and Nonaliasing Property
-
1.
Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 201203, China
-
2.
Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
-
3.
University of Chinese Academy of Sciences, Beijing 100049, China
-
摘要: 作為通信與勘探中廣泛使用的一類信號,線性調(diào)頻信號的參數(shù)分析經(jīng)常采用基于Wigner-Ville分布(WVD)的時頻分析方法。該方法具有高時頻分辨率,但在交叉項、高副瓣以及頻譜混疊問題上存在缺陷。該文提出一種名為空間變跡重排Wigner-Ville分布(SVA-rWVD)的時頻分析方法,結(jié)合空間變跡技術(shù)(SVA)的副瓣抑制能力及短時傅里葉變換(STFT)的無混疊無交叉項特性,得到一個新的時頻分布?;趩畏至亢投喾至烤€性調(diào)頻信號的仿真實驗結(jié)果表明,該方法得到的時頻分布可以降低副瓣水平至–40 dB以下同時消除交叉項及頻譜混疊現(xiàn)象。
-
關(guān)鍵詞:
- 時頻分析 /
- 線性調(diào)頻信號 /
- Wigner-Ville分布 /
- 空間變跡 /
- 短時傅里葉變換
Abstract: Chirp signals are widely used in communication and exploration. The parameter analysis of the chirp signals often uses a Wigner-Ville Distribution (WVD) based time-frequency analysis method, which achieves high time-frequency resolution. However, this method has defects in cross terms, high sidelobes, and spectral aliasing problems. To solve these problems, a time-frequency analysis method called Spatially Variant Apodiztion-rearrange Wigner Ville Distribution (SVA-rWVD) is proposed, which achieves low sidelobes by exploiting the Spatially Variant Apodization (SVA) techniques, and avoids the cross terms and the spectral aliasing problems by applying the Short Time Fourier Transform (STFT). Furthermore, a new time-frequency distribution is obtained from the proposed method. Extensive simulations show that the time-frequency distribution obtained by the proposed method not only reduces the sidelobe level to –40 dB but also eliminates cross terms and spectral aliasing for both single-component and multi-component chirp signals. -
YI Wei, CHEN Zhenhua, HOSEINNEZHAD R, et al. Joint estimation of location and signal parameters for an LFM emitter[J]. Signal Processing, 2017, 134: 100–112. doi: 10.1016/j.sigpro.2016.11.014 李秀坤, 吳玉雙. 多分量線性調(diào)頻信號的Wigner-Ville分布交叉項去除[J]. 電子學(xué)報, 2017, 45(2): 315–320. doi: 10.3969/j.issn.0372-2112.2017.02.008LI Xiukun and WU Yushuang. Cross-term removal of Wigner-Ville distribution for multi-component LFM signals[J]. Acta Electronica Sinica, 2017, 45(2): 315–320. doi: 10.3969/j.issn.0372-2112.2017.02.008 KUMAR R, ZHAO Wei, and SINGH V. Joint time-frequency analysis of seismic signals: A critical review[J]. Structural Durability & Health Monitoring, 2018, 12(2): 65–83. doi: 10.3970/sdhm.2018.02329 鄒紅星, 戴瓊海, 李衍達(dá), 等. 不含交叉項干擾且具有WVD聚集性的時頻分布之不存在性[J]. 中國科學(xué): E輯, 2002, 45(3): 174–180. doi: 10.1360/02yf9015ZOU Hongxing, DAI Qionghai, LI Yanda, et al. Nonexistence of cross-term free time-frequency distribution with concentration of Wigner-Ville distribution[J]. Science in China Series F:Information Sciences, 2002, 45(3): 174–180. doi: 10.1360/02yf9015 BOASHASH B, ALI KHAN N, and BEN-JABEUR T. Time-frequency features for pattern recognition using high-resolution TFDs: A tutorial review[J]. Digital Signal Processing, 2015, 40: 1–30. doi: 10.1016/j.dsp.2014.12.015 趙培洪, 平殿發(fā), 鄧兵, 等. 魏格納-維爾分布交叉項抑制方法綜述[J]. 探測與控制學(xué)報, 2010, 32(1): 23–29. doi: 10.3969/j.issn.1008-1194.2010.01.006ZHAO Peihong, PING Dianfa, DENG Bing, et al. Review of cross-terms suppression methods in Wigner-Ville distribution[J]. Journal of Detection &Control, 2010, 32(1): 23–29. doi: 10.3969/j.issn.1008-1194.2010.01.006 ALI KHAN N and SANDSTEN M. Time-frequency image enhancement based on interference suppression in Wigner-Ville distribution[J]. Signal Processing, 2016, 127: 80–85. doi: 10.1016/j.sigpro.2016.02.027 REN Huorong, REN An, and LI Zhiwu. A new strategy for the suppression of cross-terms in pseudo Wigner-Ville distribution[J]. Signal, Image and Video Processing, 2016, 10(1): 139–144. doi: 10.1007/s11760-014-0713-9 BOASHASH B and OUELHA S. An improved design of high-resolution quadratic time-frequency distributions for the analysis of nonstationary multicomponent signals using directional compact kernels[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2701–2713. doi: 10.1109/TSP.2017.2669899 PACHORI R B and NISHAD A. Cross-terms reduction in the Wigner-Ville distribution using tunable-Q wavelet transform[J]. Signal Processing, 2016, 120: 288–304. doi: 10.1016/j.sigpro.2015.07.026 王見, 李金同, 盧華玲, 等. 采用STFT-Wigner變換抑制Wigner-Ville分布交叉項[J]. 重慶大學(xué)學(xué)報, 2013, 36(8): 15–18. doi: 10.11835/j.jssn.1000-582X.2013.08.003WANG Jian, LI Jintong, LU Hualing, et al. Using STFT-Wigner transform to suppress the cross terms in Wigner-Ville distribution[J]. Journal of Chongqing University, 2013, 36(8): 15–18. doi: 10.11835/j.jssn.1000-582X.2013.08.003 STANKWITZ H C, DALLAIRE R J, and FIENUP J R. Nonlinear apodization for sidelobe control in SAR imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(1): 267–279. doi: 10.1109/7.366309 GUO Liang, YIN Hongfei, ZHOU Yu, et al. A novel sidelobe-suppression algorithm for airborne synthetic aperture imaging ladar[J]. Optics & Laser Technology, 2019, 111: 714–719. doi: 10.1016/j.optlastec.2018.09.005 徐光耀, 劉永澤, 許小劍. 基于變跡濾波的MIMO-SAR圖像分辨率增強技術(shù)[J]. 北京航空航天大學(xué)學(xué)報, 2017, 43(7): 1313–1320. doi: 10.13700/j.bh.1001-5965.2016.0514XU Guangyao, LIU Yongze, and XU Xiaojian. Enhanced resolution in MIMO-SAR imaging using apodization[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(7): 1313–1320. doi: 10.13700/j.bh.1001-5965.2016.0514 NI Chong, WANG Yanfei, XU Xianghui, et al. A super-resolution algorithm for synthetic aperture radar based on modified spatially variant apodization[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(2): 355–364. doi: 10.1007/s11433-010-4186-8 SARKAR B, PANIGRAHI R K, and MISHRA A K. Sidelobe suppression in Wigner distribution using non-linear apodization[C]. Proceedings of 2009 Annual IEEE India Conference, Gujarat, India, 2009: 1–4. doi: 10.1109/INDCON.2009.5409393. SUN Kewen, ZHANG Min, and YANG Dongkai. A new interference detection method based on joint hybrid time-frequency distribution for GNSS receivers[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 9057–9071. doi: 10.1109/TVT.2016.2515718 劉穎, 陳殿仁, 陳磊, 等. 基于周期Choi-Williams Hough變換的線性調(diào)頻連續(xù)波信號參數(shù)估計算法[J]. 電子與信息學(xué)報, 2015, 37(5): 1135–1140. doi: 10.11999/JEIT140876LIU Ying, CHEN Dianren, CHEN Lei, et al. Parameters estimation algorithm of linear frequency modulated continuous wave signals based on period Choi-Williams Hough transform[J]. Journal of Electronics &Information Technology, 2015, 37(5): 1135–1140. doi: 10.11999/JEIT140876 張?zhí)祢U, 全盛榮, 強幸子, 等. 基于多尺度Chirplet稀疏分解和Wigner-Ville變換的時頻分析方法[J]. 電子與信息學(xué)報, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750ZHANG Tianqi, QUAN Shengrong, QIANG Xingzi, et al. Time-frequency analysis method based on multi-scale Chirplet sparse decomposition and Wigner-Ville transform[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750 -