基于改進(jìn)神經(jīng)網(wǎng)絡(luò)增強(qiáng)自適應(yīng)UKF的組合導(dǎo)航系統(tǒng)
doi: 10.11999/JEIT181171
-
1.
蘭州交通大學(xué)自動(dòng)控制研究所 ??蘭州 ??730070
-
2.
甘肅省高原交通信息工程及控制重點(diǎn)實(shí)驗(yàn)室 蘭州 730070
-
3.
蘭州交通大學(xué)交通運(yùn)輸學(xué)院 ??蘭州 ??730070
Improved Neural Network Enhanced Navigation System of Adaptive Unsented Kalman Filter
-
1.
Automatic Control Institute, Lanzhou Jiaotong University, Lanzhou 730070, China
-
2.
Gansu Provincial Key Laboratory of Traffic Information Engineering and Control, Lanzhou 730070, China
-
3.
School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
-
摘要: 基于微機(jī)電系統(tǒng)(MEMS)的慣性器件和全球定位系統(tǒng)(GPS)的組合導(dǎo)航系統(tǒng)在衛(wèi)星信號(hào)失鎖時(shí)存在誤差發(fā)散的問(wèn)題,該文提出一種基于人工蜂群算法(ABC)改進(jìn)的徑向基函數(shù)(RBF)神經(jīng)網(wǎng)絡(luò)增強(qiáng)改進(jìn)的自適應(yīng)無(wú)跡卡爾曼濾波算法(AUKF)。在GPS信號(hào)失鎖的情況下利用訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)輸出預(yù)測(cè)信息來(lái)對(duì)捷聯(lián)慣導(dǎo)系統(tǒng)進(jìn)行誤差校正。最后通過(guò)車載半實(shí)物仿真實(shí)驗(yàn)驗(yàn)證該方法的性能。實(shí)驗(yàn)結(jié)果表明該方法在失鎖情況下對(duì)于捷聯(lián)慣導(dǎo)系統(tǒng)的誤差發(fā)散有較為明顯的抑制效果。
-
關(guān)鍵詞:
- 組合導(dǎo)航 /
- 徑向基神經(jīng)網(wǎng)絡(luò) /
- 無(wú)跡卡爾曼濾波 /
- GPS故障
Abstract: In order to solve the problem of speed and position error divergence in the integrated navigation system based on MicroElectro Mechanical Systems (MEMS) inertial device and GPS system combined positioning, an improved Adaptive Unsecnted Kalman Filter (AUKF) enhanced by the Radial Basis Function(RBF) neural network based on Artificial Bee Colony(ABC) algorithm is proposed. When the GPS signal is out of lock, the trained network outputs predictied information to perform error correction on the Strapdown Inertial Navigation System(SINS). Finally, the performance of the method is verified by vehicle-mounted semi-physical simulation experiments. The experimental results show that the proposed method has a significant inhibitory effect on the error divergence of the strapdown inertial navigation system in the case of loss of lock. -
表 1 傳感器誤差參數(shù)
性能指標(biāo) 陀螺儀 加速度計(jì) 更新頻率 分辨率 零偏 隨機(jī)游走 分辨率 零偏 隨機(jī)游走 參數(shù) 0.007°/s 0.007°/s 2.4°/(s·$\sqrt {{\rm{Hz}}} $) 0.3 mg 0.2 mg 0.2 mg/$\sqrt {{\rm{Hz}}} $ 100 Hz 下載: 導(dǎo)出CSV
表 2 仿真軌跡誤差
算法 東向速度(m/s) 北向速度(m/s) 東向位置(m) 北向位置(m) 均值 標(biāo)準(zhǔn)差 均值 標(biāo)準(zhǔn)差 均值 標(biāo)準(zhǔn)差 均值 標(biāo)準(zhǔn)差 UKF 0.0020 0.0176 –0.0051 0.0151 –0.0372 0.5383 –0.3385 0.5731 AUKF 0.0014 0.0133 –0.0045 0.0115 –0.0231 0.333 –0.1554 0.3662 改進(jìn)的AUKF 0.0012 0.0062 –0.0016 0.0063 –0.017 0.1516 –0.0134 0.1901 下載: 導(dǎo)出CSV
表 3 失鎖15 s誤差對(duì)比
算法 東向速度 (m/s) 北向速度 (m/s) 東向位置 (m) 北向位置 (m) 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 SINS 6.8848 3.4896 17.1512 8.3593 48.1258 15.5383 113.5873 36.453 RBF/UKF 2.0323 0.6450 5.8072 2.5089 11.6579 1.0626 42.2483 19.0634 RBF/AUKF 1.1013 0.3399 4.0176 1.9044 6.2061 1.1394 30.6046 13.1792 ABC_RBF/AUKF 0.4931 0.1887 1.1604 0.5895 2.1414 0.7315 5.7511 2.2276 下載: 導(dǎo)出CSV
表 4 誤差收斂幅度(%)
算法 東向速度 北向速度 東向位置 北向位置 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 RBF/UKF 70.48 81.52 66.14 69.99 75.78 93.16 62.81 50.47 RBF/AUKF 84.00 90.26 76.58 77.22 87.10 92.67 73.06 63.85 ABC_RBF/AUKF 92.84 94.59 93.24 92.95 95.50 95.29 94.94 93.90 下載: 導(dǎo)出CSV
表 5 失鎖20 s誤差對(duì)比結(jié)果
算法 東向速度 (m/s) 北向速度 (m/s) 東向位置 (m) 北向位置 (m) 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 SINS 3.8304 1.9431 42.3022 21.2832 31.6512 9.5199 397.7599 131.2909 RBF/UKF 1.4031 0.6460 2.1983 0.6543 13.4591 6.9092 10.5738 6.545 RBF/AUKF 0.7504 0.4599 1.4436 0.5315 10.2079 5.3060 4.9074 2.8413 ABC_RBF/AUKF 0.4424 0.1527 1.4165 0.4434 4.6339 2.1145 4.3115 1.5682 下載: 導(dǎo)出CSV
表 6 誤差收斂幅度對(duì)比(%)
算法 東向速度 北向速度 東向位置 北向位置 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 RBF/UKF 63.37 66.75 94.8 96.93 57.48 27.42 97.34 95.01 RBF/AUKF 80.41 76.33 96.59 97.52 67.75 44.26 98.77 97.84 ABC_RBF/AUKF 88.45 92.14 96.65 97.92 85.36 77.79 98.92 98.81 下載: 導(dǎo)出CSV
-
崔留爭(zhēng), 高思遠(yuǎn), 賈宏光, 等. 神經(jīng)網(wǎng)絡(luò)輔助卡爾曼濾波在組合導(dǎo)航中的應(yīng)用[J]. 光學(xué)精密工程, 2014, 22(5): 1304–1311.CUI Liuzheng, GAO Siyuan, JIA Hongguang, et al. Application of neural network aided Kalman filtering to SINS/GPS[J]. Optics and Precision Engineering, 2014, 22(5): 1304–1311. 劉昊, 陳光武, 魏宗壽, 等. 改進(jìn)的最小二乘自適應(yīng)濾波陀螺儀去噪方法[J]. 儀器儀表學(xué)報(bào), 2018, 39(4): 107–114.LIU Hao, CHEN Guangwu, WEI Zongshou, et al. Gyro denoising method based on least squares adaptive filter[J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 107–114. 王迪, 陳光武, 楊廳. 一種快速高精度GPS組合定位方法研究[J]. 鐵道學(xué)報(bào), 2017, 39(2): 67–73. doi: 10.3969/j.issn.1001-8360.2017.02.010WANG Di, CHEN Guangwu, and YANG Ting. Study on a fast and precision GPS integrated positioning method[J]. Journal of the China Railway Society, 2017, 39(2): 67–73. doi: 10.3969/j.issn.1001-8360.2017.02.010 ZHANG Quan and NIU Xiaoji. Research on accuracy enhancement of low-cost MEMS INS/GNSS integration for land vehicle navigation[C]. Proceedings of 2018 IEEE/ION Position, Location and Navigation Symposium, Monterey, USA, 2018: 891–898.doi: 10.1109/PLANS.2018.8373467. WANG Di, XU Xiaosu, and ZHU Yongyun. A novel hybrid of a fading filter and an extreme learning machine for GPS/INS during GPS outages[J]. Sensors, 2018, 18(11): 3863–3885. doi: 10.3390/s18113863 JIANG Zhuqing, LIU Chonghua, ZHANG Gong, et al. GPS/INS integrated navigation based on UKF and simulated annealing optimized SVM[C]. Proceedings of the 78th Vehicular Technology Conference, Las Vegas, USA, 2013: 1–5.doi: 10.1109/VTCFall.2013.6692217. NEEDHAM T G and BRAASCH M S. Impact of gravity modeling error on integrated GNSS/INS coasting performance[C]. Proceedings of 2017 IEEE/AIAA 36th Digital Avionics Systems Conference, St. Petersburg, 2017: 1–10.doi: 10.1109/DASC.2017.8102006. 高宗余, 李德勝. 神經(jīng)網(wǎng)絡(luò)在MEMS-IMU/GPS組合導(dǎo)航中的應(yīng)用研究[J]. 傳感技術(shù)學(xué)報(bào), 2009, 22(9): 1356–1360. doi: 10.3969/j.issn.1004-1699.2009.09.028GAO Zongyu and LI Desheng. Study on application of neural network in MEMS-INS/GPS combination[J]. Chinese Journal of Sensors and Actuators, 2009, 22(9): 1356–1360. doi: 10.3969/j.issn.1004-1699.2009.09.028 劉卓凡, 楊凱, 王加詳, 等. 基于ANFIS神經(jīng)網(wǎng)絡(luò)的GPS/INS組合導(dǎo)航信息融合[J]. 計(jì)算機(jī)測(cè)量與控制, 2012, 20(8): 2291–2293.LIU Zhuofan, YANG Kai, WANG Jiaxiang, et al. GPS/INS integrated navigation fusion algorithm based on ANFIS neural network[J]. Computer Measurement &Control, 2012, 20(8): 2291–2293. 孫佳興, 張曉林, 侯冰. ABC優(yōu)化BP神經(jīng)網(wǎng)絡(luò)算法在組合導(dǎo)航中的應(yīng)用研究[J]. 遙測(cè)遙控, 2016, 37(5): 40–48. doi: 10.3969/j.issn.2095-1000.2016.05.008SUN Jiaxing, ZHANG Xiaolin, and HOU Bing. Application of ABC-based BP neural network in integrated navigation system[J]. Telemetry Remote Control, 2016, 37(5): 40–48. doi: 10.3969/j.issn.2095-1000.2016.05.008 胡高歌, 高社生, 趙巖. 一種新的自適應(yīng)UKF算法及其在組合導(dǎo)航中的應(yīng)用[J]. 中國(guó)慣性技術(shù)學(xué)報(bào), 2014, 22(3): 357–361.HU Gaoge, GAO Shesheng, and ZHAO Yan. A novel adaptive UKF and its application in integrated navigation[J]. Journal of Chinese Inertial Technology, 2014, 22(3): 357–361. 江銘炎, 袁東風(fēng). 人工蜂群算法及其應(yīng)用[M]. 北京: 科學(xué)出版社, 2014: 83–94.JIANG Mingyan and YUAN Dongfeng. Artificial Bee Colony Algorithm and its Application[M]. Beijing: Science Press, 2014: 83–94. 秦永元, 張洪鉞, 汪淑華. 卡爾曼濾波與組合導(dǎo)航原理(第三版)[M]. 西安: 西北工業(yè)大學(xué)出版社, 2011: 221–231.QIN Yongyuan, ZHANG Hongyu, and WANG Shuhua. Kalman Filtering and Integrated Navigation Principles (Third Edition)[M]. Xi'an: Northwestern Polytechnical University Press, 2011: 221–231. 郭通, 蘭巨龍, 李玉峰, 等. 基于量子自適應(yīng)粒子群優(yōu)化徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)流量預(yù)測(cè)[J]. 電子與信息學(xué)報(bào), 2013, 35(9): 2220–2226.GUO Tong, LAN Julong, LI Yufeng, et al. Network traffic prediction with radial basis function neural network based on quantum adaptive particle swarm optimization[J]. Journal of Electronics &Information Technology, 2013, 35(9): 2220–2226. 金瑤, 蔡之華, 梁丁文. 基于差分演化算法的自適應(yīng)無(wú)跡卡爾曼濾波[J]. 電子與信息學(xué)報(bào), 2013, 35(4): 838–843.JIN Yao, CAI Zhihua, and LIANG Dingwen. Adaptive unscented Kalman filter based on differential evolution algorithm[J]. Journal of Electronics &Information Technology, 2013, 35(4): 838–843. 岳哲, 廉保旺, 唐成凱. 基于加權(quán)自適應(yīng)平方根容積卡爾曼濾波的GPS/INS組合導(dǎo)航方法[J]. 電子與信息學(xué)報(bào), 2018, 40(3): 565–572. doi: 10.1999/JEIT170597YUE Zhe, LIAN Baowang, and TANG Chengkai. A GPS/INS integrated navigation method based on weighting adaptive square-root cubature Kalman filter[J]. Journal of Electronics &Information Technology, 2018, 40(3): 565–572. doi: 10.1999/JEIT170597 IANG Chen, ZHANG Shubi, and ZHANG Qiuzhao. A new adaptive h-infinity filtering algorithm for the GPS/INS integrated navigation[J]. Sensors, 2016, 16(12): 2127. doi: 10.3390/s16122127 NING Yipeng, WANG Jian, HAN Houzeng, et al. An optimal radial basis function neural network enhanced adaptive robust kalman filter for GNSS/INS integrated systems in complex urban areas[J]. Sensors, 2018, 18(9): 3091–3112. doi: 10.3390/s18093091 楊少凡, 余華兵, 陳新華, 等. 基于擴(kuò)展Kalman濾波的單領(lǐng)航者自主水下航行器協(xié)同導(dǎo)航判別式訓(xùn)練方法研究[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2756–2761. doi: 10.11999/JEIT150036YANG Shaofan, YU Huabing, CHEN Xinhua, et al. Discriminative training of Kalman filters based cooperative navigation for multiple autonomous underwater vehicles with a single leader[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2756–2761. doi: 10.11999/JEIT150036 李江, 錢富才, 劉丁, 等. 具有未知參數(shù)的GPS/DR組合導(dǎo)航系統(tǒng)跟蹤與辨識(shí)[J]. 電子與信息學(xué)報(bào), 2013, 35(4): 921–926.LI Jiang, QIAN Fucai, LIU Ding, et al. Tracking and identification for GPS/DR integrated navigation system with unknown parameters[J]. Journal of Electronics &Information Technology, 2013, 35(4): 921–926. -