高形狀因子可編程微波光子濾波器集成芯片
doi: 10.11999/JEIT181156
-
1.
重慶郵電大學通信與信息工程學院 重慶 400060
-
2.
重慶聲光電公司 ??重慶 ??400060
-
3.
中國地質大學自動化學院 武漢 430074
Integrated Programmable Microwave Photonic Filter with High Shape-factor
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400060, China
-
2.
Chongqing Acoustic-Optic-Electronic Co., Chongqing 400060, China
-
3.
School of Automation, China University of Geosciences, Wuhan 430074, China
-
摘要: 為了適應新型通信技術發(fā)展,該文提出了一種高形狀因子、可編程的微波光子濾波器集成芯片。該濾波器芯片采用絕緣體上硅材料(SOI),利用有限沖擊響應原理,通過調節(jié)各支路上的熱光調制器,可以實現(xiàn)帶寬可調、形狀因子大于0.55的濾波曲線,以及中心頻率可調、帶寬可調和濾波形狀可變3種不同濾波功能。該濾波器尺寸小、重量輕、靈活性高,能適用于大帶寬信號處理,并能提供一種理想的信道劃分方式,可廣泛應用于國防領域和5G網絡中。Abstract: In order to accommodate the development of new communication technology, an integrated programmable microwave photonic filter with high shape-factor is proposed in this paper. This filter is based on Silicon-On-Insulator (SOI) and an eight-tap finite impulse response. By controlling the thermal heaters on the amplitude modulator and phase modulator of each tap, a rectangular filter with tunable bandwidth and high shape-factor greater than 0.55 is obtained. Furthermore, the tunability of central frequency, bandwidth and variable pass-band shape can be also realized. Small size, light weight and flexibility are advantages of the preposed filters, moreover, it can be applied to large bandwidth signal processing and an alternative method to part the channels. So it can be widely used in defense field and 5G networks.
-
Key words:
- Microwave photonic filter /
- High shape-factor /
- Programmable filter
-
表 1 帶寬可調、高形狀因子濾波器幅度調制陣列、相位調制陣列取值及相關特性參數(shù)
編號 1 2 3 4 5 6 7 8 幅度調制陣列 ${\alpha _1}$ 0.38 0.47 0.38 0.45 0.58 0.80 1.00 1.00 ${\alpha _2}$ 0.65 0.83 0.85 1.00 1.00 1.00 0.80 0.35 ${\alpha _3}$ 0.87 1.00 1.00 0.92 0.44 0.02 0.34 0.27 ${\alpha _4}$ 1.00 0.89 0.66 0.20 0.29 0.31 0.02 0.20 ${\alpha _5}$ 1.00 0.54 0.08 0.35 0.18 0.20 0.14 0.13 ${\alpha _6}$ 0.87 0.12 0.31 0.27 0.20 0.04 0.17 0.07 ${\alpha _7}$ 0.65 0.19 0.29 0.16 0.06 0.16 0.11 0.01 ${\alpha _8}$ 0.38 0.28 0.03 0.20 0.15 0.09 0.01 0.03 相位調制陣列 ${\phi _1}$ 0 0.04${\text{π}}$ 0.97${\text{π}}$ 0.91${\text{π}}$ 0.98${\text{π}}$ 0.69${\text{π}}$ 0.98${\text{π}}$ 0.98${\text{π}}$ ${\phi _2}$ 0.02${\text{π}}$ 0.11${\text{π}}$ 0.98${\text{π}}$ 0.92${\text{π}}$ 0 0.76${\text{π}}$ 0 0 ${\phi _3}$ 0.03${\text{π}}$ 0.19${\text{π}}$ 0 0.94${\text{π}}$ 0.02${\text{π}}$ 0.37${\text{π}}$ 0.52${\text{π}}$ 0.52${\text{π}}$ ${\phi _4}$ 0.05${\text{π}}$ 0.27${\text{π}}$ 0.02${\text{π}}$ 0.95${\text{π}}$ 0.53${\text{π}}$ 0.43${\text{π}}$ 0.03${\text{π}}$ 0.03${\text{π}}$ ${\phi _5}$ 0.06${\text{π}}$ 0.35${\text{π}}$ 0.03${\text{π}}$ 0.47${\text{π}}$ 0.55${\text{π}}$ 0 0.05${\text{π}}$ 0.55${\text{π}}$ ${\phi _6}$ 0.08${\text{π}}$ 0.42${\text{π}}$ 0.55${\text{π}}$ 0.48${\text{π}}$ 0.06${\text{π}}$ 0.09${\text{π}}$ 0.56${\text{π}}$ 0.06${\text{π}}$ ${\phi _7}$ 0.09${\text{π}}$ 0 0.56${\text{π}}$ 0 0.08${\text{π}}$ 0.66${\text{π}}$ 0.08${\text{π}}$ 0.58${\text{π}}$ ${\phi _8}$ 0.10${\text{π}}$ 0.08${\text{π}}$ 0.58${\text{π}}$ 0.02${\text{π}}$ 0.59${\text{π}}$ 0.23${\text{π}}$ 0.59${\text{π}}$ 0.59${\text{π}}$ 3 dB帶寬(GHz) 1.34 2.58 3.29 4.40 5.53 6.58 7.60 8.64 形狀因子 0.55 0.64 0.68 0.75 0.80 0.83 0.85 0.88 下載: 導出CSV
表 2 濾波形狀可變?yōu)V波器幅度調制陣列、相位調制陣列取值和仿真所得曲線與理想曲線的平均誤差
濾波曲線類型 三角形 鋸齒形 高斯形 超高斯形 幅度調制系數(shù) ${\alpha _1}$ 0.45 0.54 0.10 0.15 ${\alpha _2}$ 1.00 1.00 0.41 0.60 ${\alpha _3}$ 0.71 0.8 0.83 1.00 ${\alpha _4}$ 0.13 0.43 1.00 0.83 ${\alpha _5}$ 0.04 0.35 0.74 0.32 ${\alpha _6}$ 0.08 0.25 0.35 0.06 ${\alpha _7}$ 0.01 0.21 0.12 0.01 ${\alpha _8}$ 0.02 0.17 0.03 0.02 相位調制系數(shù)(${\text{π}}$) ${\phi _1}$ 0 0 0 0.98 ${\phi _2}$ 0.02 0.10 0.02 0 ${\phi _3}$ 0.03 0.23 0.03 0.03 ${\phi _4}$ 0.05 0.47 0.05 0.05 ${\phi _5}$ 0.06 0.75 0.06 0.06 ${\phi _6}$ 0.08 0.03 0.08 0.02 ${\phi _7}$ 0.09 0.32 0.09 0.74 ${\phi _8}$ 0.11 0.59 0.11 0.66 平均誤差(%) 0.71 5.76 0.07 0.10 下載: 導出CSV
-
HE Yutong, JIANG Yang, ZI Yuejiao, et al. Photonic microwave waveforms generation based on two cascaded single-drive Mach-Zehnder modulators[J]. Optics Express, 2018, 26(6): 7829–7841. doi: 10.1364/OE.26.007829 SOREF R A, DE LEONARDIS F, and PASSARO V M N. Tunable optical-microwave filters optimized for 100 MHz resolution[J]. Optics Express, 2018, 26(14): 18399–18411. doi: 10.1364/OE.26.018399 ZHANG Weifeng and YAO Jianping. On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter[J]. Optics Letters, 2018, 43(15): 3622–3625. doi: 10.1364/OL.43.003622 ZHAI Shan, FENG Jijun, SUN Xiaoyu, et al. Vertically integrated waveguide self-coupled resonator based tunable optical filter[J]. Optics Letters, 2018, 43(15): 3766–3769. doi: 10.1364/OL.43.003766 LIU Xiaolong, YU Yuan, TANG Haitao, et al. Silicon-on-insulator-based microwave photonic filter with narrowband and ultrahigh peak rejection[J]. Optics Letters, 2018, 43(6): 1359–1362. doi: 10.1364/OL.43.001359 SOREF R A, DE LEONARDIS F, and PASSARO V M N. Reconfigurable optical-microwave filter banks using thermo-optically tuned Bragg Mach-Zehnder devices[J]. Optics Express, 2018, 26(12): 14879–14893. doi: 10.1364/OE.26.014879 ZHOU Nan, ZHENG Shuang, LONG Yun, et al. Reconfigurable and tunable compact comb filter and (de)interleaver on silicon platform[J]. Optics Express, 2018, 26(4): 4358–4369. doi: 10.1364/OE.26.004358 DANIEL H S and GOPALAKRISHNAN G K. Extended DC-20.0 GHz tunable photonic microwave filter with high out-of-band rejection[J]. Electronics Letters, 2017, 53(9): 613–614. doi: 10.1049/el.2016.4476 DING Yunhong, PU Minhao, LIU Liu, et al. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure[J]. Optics Express, 2011, 19(7): 6462–6470. doi: 10.1364/OE.19.006462 BYRNES A, PANT R, LI Enbang, et al. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering[J]. Optics Express, 2012, 20(17): 18836–18845. doi: 10.1364/oe.20.018836 DENG Ye, LI Ming, HUANG Ningbo, et al. Ka-band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating[J]. IEEE Photonics Journal, 2014, 6(4): 5500908. doi: 10.1109/jphot.2014.2339327 XUE Xiaoxiao, XUAN Yi, KIM H J, et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring[J]. Journal of Lightwave Technology, 2014, 32(20): 3557–3565. doi: 10.1109/JLT.2014.2312359 JIANG Xinhong, WU Jiayang, YANG Yuxing, et al. Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers[J]. Optics Express, 2016, 24(3): 2183–2188. doi: 10.1364/OE.24.002183 DENG Qingzhong, LIU Lu, ZHANG Rui, et al. Athermal and flat-topped silicon Mach-Zehnder filters[J]. Optics Express, 2016, 24(26): 29577–29582. doi: 10.1364/OE.24.029577 GAO Liang, ZHANG Jiejun, CHEN Xiangfei, et al. Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted fiber Bragg grating[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(2): 380–387. doi: 10.1109/TMTT.2013.2294601 FANDI?O J S, MU?OZ P, DOMéNECH D, et al. A monolithic integrated photonic microwave filter[J]. Nature Photonics, 2017, 11(2): 124–129. doi: 10.1038/nphoton.2016.233 YANG Wenjian, YI Xiaoke, SONG Shijie, et al. Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator[C]. The 201621st OptoElectronics and Communications Conference (OECC) Held Jointly with 2016 International Conference on Photonics in Switching (PS), Niigata, Japan, 2016: 1–3. JIANG Fan, YU Yuan, TANG Haitao, et al. Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity[J]. Optics Express, 2016, 24(16): 18655–18663. doi: 10.1364/OE.24.018655 MILLER I D, MORTIMORE D B, Urquhart P, et al. A Nd3+-doped cw fiber laser using all-fiber reflectors[J]. Applied Optics, 1987, 26(11): 2197–2201. doi: 10.1364/AO.26.002197 ZHANG Yi, YANG Shuyu, GUAN Hang, et al. Sagnac loop mirror and micro-ring based laser cavity for silicon-on-insulator[J]. Optics Express, 2014, 22(15): 17872–17879. doi: 10.1364/OE.22.017872 -