超密集組網(wǎng)下一種基于干擾增量降低的分簇算法
doi: 10.11999/JEIT181144
-
1.
西安郵電大學(xué) 陜西省信息通信網(wǎng)絡(luò)及安全重點(diǎn)實(shí)驗(yàn)室 ??西安 ??710121
-
2.
西安歐亞學(xué)院信息工程學(xué)院 ??西安 ??710065
A Cluster Algorithm Based on Interference Increment Reduction in Ultra-Dense Network
-
1.
Shaanxi Key Laboratory of Information Communication Network and Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
-
2.
School of Information Engineering, Xi’an Eurasia University, Xi’an 710065, China
-
摘要:
超密集網(wǎng)絡(luò)(UDNs)拉近了終端與節(jié)點(diǎn)間的距離,使得網(wǎng)絡(luò)頻譜效率大幅度提高,擴(kuò)展了系統(tǒng)容量,但是小區(qū)邊緣用戶的性能嚴(yán)重下降。合理規(guī)劃的虛擬小區(qū)(VC)只能降低中等規(guī)模UDNs的干擾,而重疊基站下的用戶的干擾需要協(xié)作用戶簇的方法來(lái)解決。該文提出了一種干擾增量降低(IIR)的用戶分簇算法,通過(guò)在簇間不斷交換帶來(lái)最大干擾的用戶,最小化簇內(nèi)的干擾和,最終最大化系統(tǒng)和速率。該算法在不提高K均值算法的復(fù)雜度的同時(shí),不需要指定簇首,避免陷入局部最優(yōu)。仿真結(jié)果表明,網(wǎng)絡(luò)密集部署時(shí),有效提高系統(tǒng)和速率,尤其是邊緣用戶的吞吐量。
-
關(guān)鍵詞:
- 超密集網(wǎng)絡(luò) /
- 虛擬小區(qū)(VC) /
- 分簇 /
- 和速率 /
- 小區(qū)邊緣用戶
Abstract:Ultra-Dense Networks (UDNs) shorten the distance between terminals and nodes, which improve greatly the spectral efficiency and expand the system capacity. But the performance of cell edge users is seriously degraded. Reasonable planning of Virtual Cell (VC) can only reduce the interference of moderate scale UDNs, while the interference of users under overlapped base stations in a virtual cell needs to be solved by cooperative user clusters. A user clustering algorithm with Interference Increment Reduction (IIR) is proposed, which minimizes the sum of intra-cluster interference and ultimately maximizes system sum rate by continuously switching users with maximum interference between clusters. Compared with K-means algorithm, this algorithm, no need of specifying cluster heads, avoids local optimum without increasement of the computation complexity. The simulation results show that the system sum rate, especially the throughput of edge users, can be effectively improved when the network is densely deployed.
-
Key words:
- Ultra-Dense Network (UDN) /
- Virtual Cell (VC) /
- Cluster /
- Sum rate /
- Cell-edge users
-
表 1 參數(shù)含意對(duì)照表
參數(shù) 意義 參數(shù) 意義 $C$ 全部虛擬小區(qū)的集合 ${{\text{W}}_i}$ ${U_i}$中用戶的預(yù)編碼矩陣 ${C_i}$ 為用戶i服務(wù)的虛擬小區(qū) ${c_i}$ 預(yù)編碼矩陣的功率約束條件 $U$ 全部用戶的集合 $V\;$ 用戶分簇集合 ${U_j}$ 第j個(gè)虛擬小區(qū)所服務(wù)的所有用戶的集合 ${V_g}$ 第g個(gè)簇中的用戶集合 ${{\text{H}}_{i,{C_i}}}$ 用戶i在虛擬小區(qū)${C_i}$服務(wù)下的信道矢量 $R_e^{[g]}$ 第g個(gè)簇的用戶e的可達(dá)速率 ${g_{i,{m_k}}}$ 基站mk和用戶i之間的信道增益 $Z_e^{\left[ g \right]}$ 在第g個(gè)簇中的用戶e的虛擬小區(qū)間干擾 ${{\text{x}}_i}$ 虛擬小區(qū)${C_i}$內(nèi)所有基站發(fā)送給用戶i的信號(hào)所構(gòu)成的矢量 ${\text{h}}_e^{\left[ c \right]}$ 簇g中用戶e和虛擬小區(qū)c中每一個(gè)基站的信道增益 ${{\text{y}}_i}$ 用戶i的接收信號(hào)矢量 $U_c^g$ 用戶集合${U_c}$中簇g對(duì)應(yīng)的用戶集合 ${{\text{n}}_i}$ 加性高斯白噪聲矢量 ${{\text{w}}_{c,d}}$ 虛擬小區(qū)c中預(yù)編碼矩陣${{\text{W}}\!_c}$的第d列 ${P_{tx}}$ 基站的功率 ${\omega _k}$ 用戶k的和速率權(quán)重 $\sigma _{\rm n}^2$ 噪聲的功率 下載: 導(dǎo)出CSV
表 2 干擾增量降低分簇算法
算法:干擾增量降低分簇算法 輸入:兩兩用戶間的權(quán)重矩陣Wab,用戶數(shù)N,用戶集合U; 輸出:用戶分簇集合V1, V2; (1) 將用戶隨機(jī)的分成同樣大小的兩組,記為V1, V2,且
$\left| {{V_1}} \right|{\rm{ = }}\left| {{V_2}} \right|{\rm{ = }}N/2$;(2) 找到V1和V2中具有最大干擾的用戶,記為用戶m和n; (3) for: (m和n所在分組的剩余用戶); (4) 計(jì)算當(dāng)前用戶分別與m和n的干擾和,記為△Pm和△Pn; (5) end; (6) for: (非m和n所在分組的剩余用戶); (7) 計(jì)算所有用戶分別與m和n的干擾和,記為△Nm和△Nn; (8) end; (9) △m=△Pm-△Nm,為用戶m的干擾增量; (10) △n=△Pn-△Nn,為用戶n的干擾增量; (11) if (△m>0且△n<0)或(△m>0且△n>0且△m>△n); (12) 將用戶m從原來(lái)組交換到另一組;轉(zhuǎn)至(2)。 (13) end; (14) if (△m<0且△n>0)或(△m>0且△n>0且△m<△n); (15) 將用戶n從原來(lái)組交換到另一組;轉(zhuǎn)至(2)。 (16) end; (17) if △m>0且△n>0且△m=△n; (18) 將用戶m和n同時(shí)從原來(lái)組交換到另一組;轉(zhuǎn)至(2)。 (19) end; (20) if △m<0且△n<0; (21) 算法結(jié)束,得到更新后的V1和V2。 (22) end; 下載: 導(dǎo)出CSV
表 3 仿真參數(shù)
參數(shù) 數(shù)值 載波帶寬(MHz) 10 AP基站路徑損耗(dB) 140.7+36.7lgd 載波數(shù)量(個(gè)) 2/4/8 陰影衰落(dB) 8 AP基站發(fā)射功率(dBm) 20 接收端天線數(shù)目(個(gè)) 1 發(fā)送端天線數(shù)目(個(gè)) 2 用戶總數(shù)(個(gè)) 36, 54, 72 下載: 導(dǎo)出CSV
表 4 干擾增量降低(IIR)算法與參考算法仿真結(jié)果對(duì)比
小區(qū)及用戶分簇算法改善程度 6個(gè)小區(qū)36個(gè)用戶 9個(gè)小區(qū)54個(gè)用戶 12個(gè)小區(qū)72個(gè)用戶 K-mean/
×108(bps)IIR/
×108(bps)提升(%) K-mean/
×108(bps)IIR/
×108(bps)提升(%) K-mean/
×108(bps)IIR/
×108(bps)提升(%) 邊緣用戶吞吐量 1.67 1.82 8.98 2.43 2.91 19.75 3.05 3.54 16.07 系統(tǒng)平均吞吐量 1.90 2.10 10.53 2.71 3.12 15.13 3.36 3.73 11.01 下載: 導(dǎo)出CSV
表 5 多個(gè)載波下的計(jì)算復(fù)雜度衡量
不同載波
交換次數(shù)序號(hào) 1 2 3 4 5 6 7 8 9 10 2 2 9 0 1 0 4 1 0 3 0 4 3 7 8 9 7 2 3 14 3 7 8 10 3 4 5 10 7 9 17 3 4 下載: 導(dǎo)出CSV
-
朱曉榮, 朱蔚然. 超密集小峰窩網(wǎng)中基于干擾協(xié)調(diào)的小區(qū)分簇和功率分配算法[J]. 電子與信息學(xué)報(bào), 2016, 38(5): 1173–1178. doi: 10.11999/JEIT150756ZHU Xiaorong and ZHU Weiran. Interference coordination-based cell clustering and power allocation algorithm in dense small cell networks[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1173–1178. doi: 10.11999/JEIT150756 LIANG Liang, WANG Wen, JIA Yunjian, et al. A cluster-based energy-efficient resource management scheme for ultra-dense networks[J]. IEEE Access, 2016, 4: 6823–6832. doi: 10.1109/ACCESS.2016.2614517 AL-RUBAYE S, AL-DULAIMI A, COSMAS J, et al. Call admission control for non-standalone 5G ultra-dense networks[J]. IEEE Communications Letters, 2018, 22(5): 1058–1061. doi: 10.1109/LCOMM.2018.2813360 GE Xiaohu, TU Song, MAO Guoqiang, et al. 5G ultra-dense cellular networks[J]. IEEE Wireless Communications, 2016, 23(1): 72–79. doi: 10.1109/MWC.2016.7422408 YANG Bin, MAO Guoqiang, DING Ming, et al. Dense small cell networks: From noise-limited to dense interference-limited[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4262–4277. doi: 10.1109/TVT.2018.2794452 PATEROMICHELAKIS E, SHARIAT M, QUDDUS A, et al. Dynamic clustering framework for multi-cell scheduling in dense small cell networks[J]. IEEE Communications Letters, 2013, 17(9): 1802–1805. doi: 10.1109/LCOMM.2013.072313.131248 王瑩, 劉寶玲, 沈曉冬, 等. 分布式虛擬群小區(qū)中的接入控制[J]. 電子與信息學(xué)報(bào), 2006, 28(11): 2090–2093.WANG Ying, LIU Baoling, SHEN Xiaodong, et al. Admission control in distributed virtual group cell systems[J]. Journal of Electronics &Information Technology, 2006, 28(11): 2090–2093. LIU Qian, CHUAI Gang, GAO Weidong, et al. Fuzzy logic-based virtual cell design in ultra-dense networks[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018: 87. doi: 10.1186/s13638-018-1093-6 BASSOY S, FAROOQ H, IMRAN M A, et al. Coordinated multi-point clustering schemes: A survey[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 743–764. doi: 10.1109/COMST.2017.2662212 KINOSHITA K, SHIBATA S, KAWANO K, et al. A CoMP clustering method in consideration of spectrum sharing for fairness improvement[C]. The 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, Munich, Germany, 2017: 137–142. 劉嬌. 面向5G超密集網(wǎng)絡(luò)基站協(xié)同節(jié)能關(guān)鍵技術(shù)研究[D]. [碩士論文], 北京交通大學(xué), 2018.LIU Jiao. Research on energy-saving technology of base station in 5G ultra dense network[D]. [Master dissertation], Beijing Jiaotong University, 2018. KANG H S and KIM D K. User-centric overlapped clustering based on anchor-based precoding in cellular networks[J]. IEEE Communications Letters, 2016, 20(3): 542–545. doi: 10.1109/LCOMM.2016.2515085 ALI M, HOSSAIN E, and KIM D I. Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: User clustering, beamforming, and power allocation[J]. IEEE Access, 2017, 5: 565–577. doi: 10.1109/ACCESS.2016.2646183 KURRAS M, FAHSE S, and THIELE L. Density based user clustering for wireless massive connectivity enabling Internet of Things[C]. 2015 IEEE Globecom Workshops, San Diego, USA, 2015: 1–6. WEI Rong, WANG Ying, and ZHANG Yuan. A two-stage cluster-based resource management scheme in ultra-dense networks[C]. 2014 IEEE/CIC International Conference on Communications in China, Shanghai, China, 2014: 738–742. doi: 10.1109/ICCChina.2014.7008373. HUANG Junwei, ZHOU Pengguang, LUO Kai, el al. Two-stage resource allocation scheme for three-tier ultra-dense network[J]. China Communications, 2017, 14(10): 118–129. doi: 10.1109/CC.2017.8107637 LI Wenchao and ZHANG Jing. Cluster-based resource allocation scheme with QoS guarantee in ultra-dense networks[J]. IET Communications, 2018, 12(7): 861–867. doi: 10.1049/iet-com.2017.1331 -