學(xué)生 t 混合勢(shì)均衡多目標(biāo)多伯努利濾波器
doi: 10.11999/JEIT181121
-
1.
空軍工程大學(xué)信息與導(dǎo)航學(xué)院 西安 710077
-
2.
空軍研究院 北京 100096
-
3.
93658部隊(duì) 北京 100144
Student’s t Mixture Cardinality Balanced Multi-target Multi-Bernoulli Filter
-
1.
Institute of Information and Navigation, Aire Force Engineering University, Xi’an 710077, China
-
2.
Air Force Research Institute, Beijing 100096, China
-
3.
Unit 93658, Beijing 100144, China
-
摘要: 在有重尾的過(guò)程噪聲和量測(cè)噪聲的影響下,高斯混合勢(shì)均衡多目標(biāo)多伯努利濾波器(GM-CBMeMBer)的濾波性能會(huì)明顯下降。針對(duì)上述問(wèn)題,該文提出一種新的學(xué)生 t 混合勢(shì)均衡多目標(biāo)多伯努利濾波器(STM-CBMeMBer)。該濾波器將過(guò)程噪聲和量測(cè)噪聲近似為學(xué)生 t 分布,并用學(xué)生 t 混合模型來(lái)近似多目標(biāo)的先驗(yàn)強(qiáng)度。從理論上推導(dǎo)出學(xué)生 t 混合形式的預(yù)測(cè)強(qiáng)度和后驗(yàn)強(qiáng)度,建立了勢(shì)均衡多目標(biāo)多伯努利濾波器的閉式遞推框架。仿真結(jié)果表明,在重尾的過(guò)程噪聲和量測(cè)噪聲存在的環(huán)境中,該濾波器能有效抑制其干擾,相比于傳統(tǒng)方法,具有更高的跟蹤精度。
-
關(guān)鍵詞:
- 多目標(biāo)跟蹤 /
- 重尾噪聲 /
- 勢(shì)均衡多目標(biāo)多伯努利 /
- 學(xué)生 t 分布 /
- 閉式遞推框架
Abstract: The filtering performance of Gaussian Mixture Cardinality Balanced Multi-target Multi-Bernoulli (GM-CBMeMBer) filter can be effected by the heavy-tailed process noise and measurement noise. To solve this problem, a new STudent’s t Mixture Cardinality Balanced Multi-target Multi-Bernoulli (STM-CBMeMBer) filter is proposed. The process noise and measurement noise approximately obey the Student’s t distribution in the filter, where the Student’s t mixture model is used to describe approximately the posterior intensity of the multi-target. The predictive intensity and posterior intensity of Student’s t mixture form are deduced theoretically, and the closed recursive framework of cardinality balanced multi-target multi-Bernoulli filter is established. The simulation results show that, in the presence of the heavy-tailed process noise and the measurement noise, the filter can effectively suppress its interference, its tracking accuracy is superior over the traditional methods. -
LEUNG K Y K, INOSTROZA F, and ADAMS M. Relating random vector and random finite set estimation in navigation, mapping, and tracking[J]. IEEE Transactions on Signal Processing, 2017, 65(17): 4609–4623. doi: 10.1109/TSP.2017.2701330 JIN Xuebo, SUN Shuli, WEI Hong, et al. Advances in multi-sensor information fusion: Theory and applications 2017[J]. Sensors, 2018, 18(4): 1162. doi: 10.3390/s18041162 MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523–1543. doi: 10.1109/TAES.2007.4441756 MAHLER R P S, VO B T, and VO B N. CPHD filtering with unknown clutter rate and detection profile[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3497–3513. doi: 10.1109/TSP.2011.2128316 MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Boston: Artech House, Inc., 2007: 655-682. VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924 YANG Jinlong and GE Hongwei. Adaptive probability hypothesis density filter based on variational bayesian approximation for multi-target tracking[J]. IET Radar, Sonar, & Navigation, 2013, 7(9): 959–967. doi: 10.1049/iet-rsn.2012.0357 HUANG Yulong, ZHANG Yonggang, LI Ning, et al. Robust student’s t based nonlinear filter and smoother[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2586–2596. doi: 10.1109/TAES.2016.150722 TRONARP F, HOSTETTLER R, and S?RKK? S. Sigma-point filtering for nonlinear systems with non-additive heavy-tailed noise[C]. The 19th International Conference on Information Fusion, Heidelberg, Germany, 2016: 1859–1866. HUANG Yulong, ZHANG Yonggang, LI Ning, et al. A robust student’s t based cubature filter[C]. The 19th International Conference on Information Fusion, Heidelberg, Germany, 2016: 9–16. ROTH M, ?ZKAN E, and GUSTAFSSON F. A student’s t filter for heavy tailed process and measurement noise[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 5770–5774. SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/tsp.2008.920469 TIAN Xin, YUAN Ting, and BAR-SHALOM Y. Track-to-track fusion in linear and nonlinear systems[C]. Selected Papers of the Itzhack Y. Bar-Itzhack Memorial Symposium on Estimation, Navigation, and Spacecraft Control, Berlin Heidelberg, 2015: 21–41. doi: 10.1007/978-3-662-44785-7_2. MCNEIL A J. Multivariate t distributions and their applications[J]. Journal of the American Statistical Association, 2006, 101(473): 390–391. doi: 10.1198/jasa.2006.s67 -