A Small Moving Object Detection Algorithm Based on Track in Video Surveillance
-
Information Engineering University, PLA Strategic Support Force, Zhengzhou 450000, China
-
摘要: 針對視頻監(jiān)控中運動小目標難以檢測的問題,該文提出一種基于航跡的檢測算法。首先,為了降低檢測漏警率,提出區(qū)域紋理特征與差值概率融合的自適應(yīng)前景提取方法;其次,為了降低檢測虛警率,設(shè)計航跡關(guān)聯(lián)的概率計算模型以建立疑似目標在視頻幀間的關(guān)聯(lián),并設(shè)置雙門限以區(qū)分疑似目標中的真實目標與虛假目標。實驗結(jié)果表明,與多種經(jīng)典算法相比,該算法能對定量范圍內(nèi)的運動小目標以更低的漏警率和虛警率實施準確檢測。
-
關(guān)鍵詞:
- 運動目標檢測 /
- 小目標檢測 /
- 航跡關(guān)聯(lián)
Abstract: To solve the problem that small moving object is difficult to be detected in video surveillance, a track-based detection algorithm is proposed. Firstly, in order to reduce missing alarm, an adaptive foreground extraction method combining regional texture features and difference probability is presented. Then, for reducing false alarm, the probability computing model of track correlation is designed to establish the correlation of suspected objects between frames, and double-threshold are set to distinguish between true and false positive. Experimental results show that compared with many classical algorithms, this algorithm can accurately detect small moving object within the quantitative range with lower missing and false alarm.-
Key words:
- Moving object detection /
- Small object detection /
- Track correlation
-
表 1 航跡關(guān)聯(lián)規(guī)則
(1) do; (2) for $u = 1,2,·\!·· ,U$; (3) 尋找${\rm{APT}}{_{U \times V}\;}$中第$u$行中的最大值${a_{uv}}$,記錄其列號$v$; (4) if第$v$列的最大值等于${a_{uv}}$; (5) break; (6) end if; (7) end for; (8) 關(guān)聯(lián)$\{ {\text{Z}}_k^v\} $與$\{ \theta _{k - 1}^u\} $,刪除${\rm{APT}}{_{U \times V}}\;$中的第$u$行和第$v$列元素,
$U = U - 1 ,V = V - 1$;(9) while ${\rm{APT}}{_{U \times V}}\;$中存在元素大于0。 下載: 導(dǎo)出CSV
表 2 5種算法在不同視頻中的MA值比較
視頻 圖像尺寸(pix) 檢測范圍(%) 像素數(shù) MOG2 ViBe+ Faster RCNN 文獻[5] 本文算法 blizzard $ 720 \times 480$ 0.10~0.12 345~414 0.15 0.78 1.00 1.00 0.28 highway $ 320 \times 240$ 0.12~0.30 92~230 1.00 0.16 1.00 0.50 0.05 Camera 01 $ 1920 \times 1080$ 0.01~0.12 207~2488 0.38 0.29 1.00 0.86 0.11 Camera 02 $ 1920 \times 1080$ 0.01~0.12 207~2488 0.39 0.28 1.00 0.77 0.13 下載: 導(dǎo)出CSV
表 3 5種算法在不同視頻中的FA值比較
視頻 圖像尺寸(pix) 檢測范圍(%) 像素數(shù) MOG2 ViBe+ Faster RCNN 文獻[5] 本文算法 blizzard $ 720 \times 480$ 0.10~0.12 345~414 0.71 0.21 0.00 0.00 0.18 highway $ 320 \times 240$ 0.12~0.30 92~230 0.37 0.61 0.00 0.00 0.29 Camera 01 $ 1920 \times 1080$ 0.01~0.12 207~2488 0.51 0.25 0.00 0.00 0.13 Camera 02 $ 1920 \times 1080$ 0.01~0.12 207~2488 0.52 0.17 0.00 0.00 0.14 下載: 導(dǎo)出CSV
-
CHEN Chenyi, LIU Mingyu, TUZEL O, et al. R-CNN for small object detection[C]. Proceedings of the 13th Asian Conference on Computer Vision, Taipei, China, 2016: 214–230. 鄧鶴, 魏艷濤, 童名文, 等. 基于改進的局部反熵算子的小目標檢測[J]. 通信學(xué)報, 2013, 34(4): 60–69. doi: 10.3969/j.issn.1000-436x.2013.04.007DENG He, WEI Yantao, TONG Mingwen, et al. Small target detection based on modified local reverse entropy operator[J]. Journal on Communications, 2013, 34(4): 60–69. doi: 10.3969/j.issn.1000-436x.2013.04.007 CAO Guimei, XIE Xuemei, YANG Wenzhe, et al. Feature-fused SSD: Fast detection for small objects[C]. Proceedings of SPIE 10615, Ninth International Conference on Graphic and Image Processing, Qingdao, China, 2017: 106151E. REN Shaoqing, He Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031 LIN Tsungyi, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. 楊依忠, 汪鵬飛, 胡雄樓, 等. 基于魯棒主成分分析的運動目標檢測優(yōu)化算法[J]. 電子與信息學(xué)報, 2018, 40(6): 1309–1315. doi: 10.11999/JEIT170789YANG Yizhong, WANG Pengfei, HU Xionglou, et al. Moving object detection optimization algorithm based on robust principal component analysis[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1309–1315. doi: 10.11999/JEIT170789 ZIVKOVIC Z and VAN DER HEIJDEN F. Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pattern Recognition Letters, 2006, 27(7): 773–780. doi: 10.1016/j.patrec.2005.11.005 VAN DROOGENBROECK M and PAQUOT O. Background subtraction: Experiments and improvements for ViBe[C]. Proceedings of 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, USA, 2012: 32–37. 薛陽, 張亞飛, 楊天宇, 等. 一種針對抖動視頻序列的運動目標檢測算法[J]. 激光與光電子學(xué)進展, 2018, 55(9): 091506.XUE Yang, ZHANG Yafei, YANG Tianyu, et al. A moving object detection algorithm aiming at jitter video sequence[J]. Laser &Optoelectronics Progress, 2018, 55(9): 091506. WREN C R, AZARBAYEJANI A, DARRELL T, et al. Pfinder: Real-time tracking of the human body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780–785. doi: 10.1109/34.598236 趙春江. C#數(shù)字圖像處理算法典型實例[M]. 北京: 人民郵電出版社, 2009: 29–31.ZHAO Chunjiang. C# Digital Image Processing Algorithm for Typical Examples[M]. Beijing: Posts & Telecom Press, 2009: 29–31. 李長春, 王艷杰, 馬春艷, 等. 多目標無人機微型凝視高光譜成像儀輻射校正[J]. 測繪通報, 2019(1): 60–64. doi: 10.13474/j.cnki.11-2246.2019.0012LI Changchun, WANG Yanjie, MA Chunyan, et al. Research on radiance correction of mini snapshot high spectrometer load on UAV using multi-target[J]. Bulletin of Surveying and Mapping, 2019(1): 60–64. doi: 10.13474/j.cnki.11-2246.2019.0012 THEODORIDIS S, 李晶皎, 王愛俠, 王驕, 等譯. 模式識別[M]. 4版. 北京: 電子工業(yè)出版社, 2016: 282–288.THEODORIDIS S, LI Jingjiao, WANG Aixia, WANG Jiao, et al. translation. Pattern Recognition[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2016: 282–288. GONZALEZ R C, WOODS R E, 阮秋琦, 阮宇智, 等譯. 數(shù)字圖像處理[M]. 3版. 北京: 電子工業(yè)出版社, 2017: 423–430.GONZALEZ R C, WOODS R E, RUAN Qiuqi, RUAN Yuzhi, et al. translation. Digital Image Processing[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2017: 423–430. 陳錢, 錢惟賢, 張聞文. 紅外目標探測[M]. 北京: 電子工業(yè)出版社, 2016: 298–300.CHEN Qian, QIAN Weixian, and ZHANG Wenwen. Infrared Target Detection[M]. Beijing: Publishing House of Electronics Industry, 2016: 298–300. 姚天任, 孫洪. 現(xiàn)代數(shù)字信號處理[M]. 2版. 武漢: 華中科技大學(xué)出版社, 2018: 30–40.YAO Tianren and SUN Hong. Advanced Digital Signal Processing[M]. 2nd ed. Wuhan: Huazhong University of Science & Technology Press, 2018: 30–40. -