一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于對(duì)數(shù)行列式散度與對(duì)稱對(duì)數(shù)行列式散度的高頻地波雷達(dá)目標(biāo)檢測(cè)器

葉磊 王勇 楊強(qiáng) 鄧維波

葉磊, 王勇, 楊強(qiáng), 鄧維波. 基于對(duì)數(shù)行列式散度與對(duì)稱對(duì)數(shù)行列式散度的高頻地波雷達(dá)目標(biāo)檢測(cè)器[J]. 電子與信息學(xué)報(bào), 2019, 41(8): 1931-1938. doi: 10.11999/JEIT181078
引用本文: 葉磊, 王勇, 楊強(qiáng), 鄧維波. 基于對(duì)數(shù)行列式散度與對(duì)稱對(duì)數(shù)行列式散度的高頻地波雷達(dá)目標(biāo)檢測(cè)器[J]. 電子與信息學(xué)報(bào), 2019, 41(8): 1931-1938. doi: 10.11999/JEIT181078
Lei YE, Yong WANG, Qiang YANG, Weibo DENG. High Frequency Surface Wave Radar Detector Based on Log-determinant Divergence and Symmetrized Log-determinant Divergence[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1931-1938. doi: 10.11999/JEIT181078
Citation: Lei YE, Yong WANG, Qiang YANG, Weibo DENG. High Frequency Surface Wave Radar Detector Based on Log-determinant Divergence and Symmetrized Log-determinant Divergence[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1931-1938. doi: 10.11999/JEIT181078

基于對(duì)數(shù)行列式散度與對(duì)稱對(duì)數(shù)行列式散度的高頻地波雷達(dá)目標(biāo)檢測(cè)器

doi: 10.11999/JEIT181078
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61701140, 61571159, 61171182),中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(HIT.MKSTISP.2016 13, HIT.MKSTISP.2016 26)
詳細(xì)信息
    作者簡(jiǎn)介:

    葉磊:男,1989年生,博士,研究方向?yàn)槔走_(dá)目標(biāo)檢測(cè)、信息幾何理論

    王勇:男,1979年生,教授,博士生導(dǎo)師,研究方向?yàn)槔走_(dá)信號(hào)處理、ISAR圖像處理

    楊強(qiáng):男,1970年生,教授,博士生導(dǎo)師,研究方向?yàn)槔走_(dá)目標(biāo)檢測(cè)、新體制信號(hào)處理和信息提取

    鄧維波:男,1961年生,教授,博士生導(dǎo)師,研究方向?yàn)殛嚵行盘?hào)處理、雷達(dá)系統(tǒng)

    通訊作者:

    楊強(qiáng) yq@hit.edu.cn

  • 中圖分類號(hào): TN958.93

High Frequency Surface Wave Radar Detector Based on Log-determinant Divergence and Symmetrized Log-determinant Divergence

Funds: The National Natural Science Foundation of China (61701140, 61571159, 61171182), The Fundamental Research Funds for the Central Universities (HIT.MKSTISP.2016 13, HIT.MKSTISP.2016 26)
  • 摘要: 高頻地波雷達(dá)(HFSWR)利用電磁波繞射原理進(jìn)行目標(biāo)探測(cè),具有超視距的特性。然而,探測(cè)距離的增加會(huì)使得雷達(dá)目標(biāo)回波能量減弱,進(jìn)而使得雷達(dá)探測(cè)能力下降。為了改善高頻地波雷達(dá)的探測(cè)性能,該文提出了一種基于信息幾何理論的局域聯(lián)合矩陣恒虛警率(CFAR)檢測(cè)器,利用信號(hào)在角度、多普勒速度和距離的多維信息進(jìn)行檢測(cè);并使用對(duì)數(shù)行列式散度(LDD)和對(duì)稱對(duì)數(shù)行列式散度(SLDD)代替黎曼距離(RD)作為距離度量。最后,實(shí)驗(yàn)結(jié)果驗(yàn)證了該文提出的檢測(cè)器能夠有效地改善雷達(dá)對(duì)目標(biāo)的檢測(cè)性能。
  • 圖  1  雷達(dá)接收陣列

    圖  2  局域聯(lián)合處理區(qū)域

    圖  3  矩陣恒虛警率檢測(cè)的幾何解釋

    圖  4  局域聯(lián)合矩陣恒虛警率檢測(cè)器結(jié)構(gòu)

    圖  5  迭代次數(shù)選取

    圖  6  歸一化檢測(cè)統(tǒng)計(jì)量

    圖  7  檢測(cè)概率隨SINR變化曲線

    表  1  不同距離度量方法及其幾何均值

    度量方法距離計(jì)算幾何均值
    RD${{{D}}_R}^2({{{R}}_1},{{{R}}_2}) = {\rm{tr}}[{\lg ^2}({{{R}}_1}^{ - 1/2}{{{R}}_2}{{{R}}_1}^{ - 1/2})] $${\bar {{R}}_{t + 1}} = \bar {{R}}_t^{1/2}\exp \left[{\rm{ds}} \cdot \frac{1}{N}\mathop \displaystyle\sum \limits_{i = 1}^N \lg (\bar {{R}}_t^{ - 1/2}{{{R}}_i}\bar {{R}}_t^{ - 1/2})\right]\bar {{R}}_t^{1/2}$
    LDD${{{D}}_{\rm{LD}}}({{{R}}_1},{{{R}}_2}) = {\rm{tr}}({{R}}_2^{ - 1}({{{R}}_1} - {{{R}}_2})) - \ln \det({{R}}_2^{ - 1}{{{R}}_1})$$\bar {{R}} = {\left( {\frac{1}{N}\mathop \sum \limits_{k = 1}^N {{R}}_k^{ - 1}} \right)^{ - 1}}$
    SLDD$\begin{aligned} {{{D}}_{{\rm{SLD}}}}({{{R}}_1},{{{R}}_2}) =& \frac{1}{2}({\rm{tr}}({{R}}_2^{ - 1}({{{R}}_1} - {{{R}}_2})) - \ln \det({{R}}_2^{ - 1}{{{R}}_1}) \\ & + {\rm{tr}}({{R}}_1^{ - 1}({{{R}}_2} - {{{R}}_1})) - \ln \det({{R}}_1^{ - 1}{{{R}}_2})) \\ \end{aligned} $$\bar {{R}} = {\left( {\frac{1}{N}\mathop \sum \limits_{k = 1}^N {{R}}_k^{ - 1}} \right)^{ - 1}}$
    下載: 導(dǎo)出CSV

    表  2  基本矩陣運(yùn)算的復(fù)雜度

    矩陣運(yùn)算表達(dá)式浮點(diǎn)數(shù)計(jì)算次數(shù)矩陣運(yùn)算表達(dá)式浮點(diǎn)數(shù)計(jì)算次數(shù)
    矩陣乘法${{{R}}_1}{{{R}}_2}$$8{n^3} - 2{n^2}$矩陣求逆${{R}}_1^{ - 1}$$8{n^3} - 2{n^2}$
    矩陣加法${{{R}}_1}{{ + }}{{{R}}_2}$$2{n^2}$矩陣開(kāi)方${{R}}_1^{1/2}$$24{n^3} + 2{n^2} - 8n$
    矩陣的跡${\rm{tr}}({{{R}}_1})$$8{n^2} - 6n - 2$矩陣指數(shù)$\exp ({{{R}}_1})$${n^4}/2 + 24{n^3} + 1.5{n^2} - n$
    矩陣行列式$\det ({{{R}}_1})$$8{n^2} - 2n - 6$矩陣對(duì)數(shù)$\lg ({{{R}}_1})$${n^4}/2 + 25{n^3} + {n^2} - 1.5n$
    下載: 導(dǎo)出CSV

    表  3  不同距離度量方法的復(fù)雜度

    度量方法距離計(jì)算復(fù)雜度幾何均值計(jì)算復(fù)雜度
    RD${n^4}/2 + 73{n^3} + 5{n^2} - 15.5n - 1$$(N + 1){n^4}/2 + (41N + 88){n^3} - (N + 6.5){n^2} - (1.5N + 9)n$
    LDD$16{n^3} + 14{n^2} - 8n - 6$$8(N + 1){n^3} - 2{n^2}$
    SLDD$32{n^3} + 28{n^2} - 15n - 11$$8(N + 1){n^3} - 2{n^2}$
    下載: 導(dǎo)出CSV
  • 姚迪, 張?chǎng)? 楊強(qiáng), 等. 基于空間多波束的高頻地波雷達(dá)電離層雜波抑制算法[J]. 電子與信息學(xué)報(bào), 2017, 39(12): 2827–2833. doi: 10.11999/JEIT170477

    YAO Di, ZHANG Xin, YANG Qiang, et al. Ionospheric clutter suppression algorithm based on space multibeam for high frequency surface wave radar[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2827–2833. doi: 10.11999/JEIT170477
    WANG Yiming, MAO Xingpeng, ZHANG Jie, et al. Detection of vessel targets in sea clutter using in situ sea state measurements with HFSWR[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 302–306. doi: 10.1109/LGRS.2017.2786725
    楊強(qiáng), 劉永坦. 復(fù)雜背景下的二維檢測(cè)研究[J]. 系統(tǒng)工程與電子技術(shù), 2002, 24(1): 34–37. doi: 10.3321/j.issn:1001-506X.2002.01.010

    YANG Qiang and LIU Yongtan. 2-D detection in complex background[J]. Systems Engineering and Electronics, 2002, 24(1): 34–37. doi: 10.3321/j.issn:1001-506X.2002.01.010
    TURLEY M D E. Hybrid CFAR techniques for HF radar[C]. Radar 97, Edinburgh, UK, 1997: 36–40.
    LI Yang, ZHANG Ning, and YANG Qiang. Characteristic-knowledge-aided spectral detection of high frequency first-order sea echo[J]. Journal of Systems Engineering and Electronics, 2009, 20(4): 718–725.
    WANG Hong and CAI Lujing. On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 660–670. doi: 10.1109/7.303737
    ZHANG Xin, SU Yanhua, YANG Qiang, et al. Space-time adaptive processing-based algorithm for meteor trail suppression in high-frequency surface wave radar[J]. IET Radar, Sonar & Navigation, 2015, 9(4): 429–436. doi: 10.1049/iet-rsn.2014.0300
    衣春雷. 船載高頻地波雷達(dá)海雜波抑制方法研究[D].[博士論文], 哈爾濱工業(yè)大學(xué), 2017.

    YI Chunlei. Study on sea clutter suppression for shipborne high frequency surface wave radar[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2017.
    RADHAKRISHNA RAO C. Information and the accuracy attainable in the estimation of statistical parameters[J]. Bulletin of the Calcutta Mathematical Society, 1945, 37(3): 81–91.
    WANG Meng, NING Zhenhu, XIAO Chuangbai, et al. Sentiment classification based on information geometry and deep belief networks[J]. IEEE Access, 2018, 6: 35206–35213. doi: 10.1109/ACCESS.2018.2848298
    黎湘, 程永強(qiáng), 王宏強(qiáng), 等. 雷達(dá)信號(hào)處理的信息幾何方法[M]. 北京: 科學(xué)出版社, 2014: 13: 18.
    ZHANG Fode, NG H K T, and SHI Yimin. Information geometry on the curved q-exponential family with application to survival data analysis[J]. Physica A: Statistical Mechanics and its Applications, 2018, 512: 788–802. doi: 10.1016/j.physa.2018.08.143
    TRANSTRUM M K, SARI? A T, and STANKOVI? A M. Information geometry approach to verification of dynamic models in power systems[J]. IEEE Transactions on Power Systems, 2018, 33(1): 440–450. doi: 10.1109/TPWRS.2017.2692523
    HIAI F and PETZ D. Riemannian metrics on positive definite matrices related to means. II[J]. Linear Algebra and Its Applications, 2012, 436(7): 2117–2136. doi: 10.1016/j.laa.2011.10.029
    劉俊凱, 王雪松, 王濤, 等. 信息幾何在脈沖多普勒雷達(dá)目標(biāo)檢測(cè)中的應(yīng)用[J]. 國(guó)防科技大學(xué)學(xué)報(bào), 2011, 33(2): 77–80. doi: 10.3969/j.issn.1001-2486.2011.02.018

    LIU Junkai, WANG Xuesong, WANG Tao, et al. Application of information geometry to target detection for pulsed-Doppler radar[J]. Journal of National University of Defense Technology, 2011, 33(2): 77–80. doi: 10.3969/j.issn.1001-2486.2011.02.018
    STEIN C. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution[C]. The Third Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, USA, 1956: 197–206.
    HUA Xiaoqiang, CHENG Yongqiang, WANG Hongqiang, et al. Geometric means and medians with applications to target detection[J]. IET Signal Processing, 2017, 11(6): 711–720. doi: 10.1049/iet-spr.2016.0547
    LENGLET C, ROUSSON M, DERICHE R, et al. Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing[J]. Journal of Mathematical Imaging and Vision, 2006, 25(3): 423–444. doi: 10.1007/s10851-006-6897-z
  • 加載中
圖(7) / 表(3)
計(jì)量
  • 文章訪問(wèn)數(shù):  2520
  • HTML全文瀏覽量:  922
  • PDF下載量:  48
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-11-23
  • 修回日期:  2019-04-23
  • 網(wǎng)絡(luò)出版日期:  2019-04-28
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回