基于方向圖和多普勒相關系數的天基陣列SAR通道相位誤差補償方法
doi: 10.11999/JEIT181061
-
1.
中國科學院電子學研究所 北京 100190
-
2.
微波成像技術重點實驗室 北京 ??100190
-
3.
中國科學院大學 北京?? 100049
-
4.
中國科學院國家授時中心 西安?? 710600
A Channel Phase Error Compensation Method for Space Borne Array SAR Based on Antenna Pattern and Doppler Correlation Coefficient
-
1.
Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
-
2.
National Key Laboratory of Microwave Imaging Technology, Beijing 100190, China
-
3.
University of Chinese Academy of Sciences, Beijing 100049, China
-
4.
National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China
-
摘要: 隨著對地觀測技術的發(fā)展,要求SAR系統(tǒng)能夠同時實現高分辨率和寬測繪帶,天基陣列多通道SAR結合數字波束形成(DBF)技術為解決該問題提供了很好的思路,但各個通道之間相位誤差會很大程度上降低DBF的性能,常規(guī)通道誤差補償方法估計精度不足,應用場景受限。針對上述問題,該文提出一種基于方向圖和多普勒相關系數的天基陣列SAR通道相位誤差補償方法,不僅利用天線方向圖先驗信息,還充分利用場景不同多普勒相關性信息,通過最小化天線方向圖和多普勒的組合差異,實現對通道之間相位誤差的估計。結合RADAR-SAT數據的仿真試驗結果驗證了該算法的有效性。Abstract: With the development of earth remote sensing technology, SAR system is required to obtain high resolution and wide swath simultaneously, the space borne array SAR combined with Digital Beam Forming (DBF) technology provides a good solution to solve the problem. However, the phase error between channels will degrade the quality of DBF, and the traditional compensation methods suffer from large error or limite application. In this paper, a compensation method based on antenna pattern and Doppler correlation coefficient is proposed, using the antenna pattern and meanwhile utilizing the Doppler correlation coefficient. By minimizing the combined cost function, the phase error between channels are estimated. Simulation results using RADAR-SAT data validate the effectiveness of the proposed method.
-
Key words:
- SAR /
- Multi-channel /
- Channel phase error /
- Antenna pattern /
- Doppler correlation coefficient
-
表 1 雷達系統(tǒng)參數
參數 數值 雷達工作頻率(GHz) 5.3 雷達有效速度(m/s) 150 中心斜距(km) 20 PRF(Hz) 40 帶寬(MHz) 50 信噪比(dB) 20 方位向通道數 3 下載: 導出CSV
表 2 實際系統(tǒng)的主要參數
參數 數值 工作頻率(GHz) 5.3 帶寬(MHz) 30 采樣率(MHz) 32.3 PRF(Hz) 1256.98 速度(m/s) 7062 通道數 3 相鄰通道間的距離(m) 1.9 下載: 導出CSV
-
葉愷, 禹衛(wèi)東, 徐偉, 等. 基于柱形拋物面天線的MIMO SAR研究[J]. 電子與信息學報, 2018, 40(8): 1816–1822. doi: 10.11999/JEIT171105YE Kai, YU Weidong, XU Wei, et al. Investigation on parabolic cylinder reflector based MIMO SAR[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1816–1822. doi: 10.11999/JEIT171105 DING Chibiao, LIANG Xingdong, WANG Jie, et al. An novel airborne MIMO-SAR system built in IECAS[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 2423–2426. 周建衛(wèi), 李道京, 田鶴, 等. 基于共形稀疏陣列的艇載外輻射源雷達性能分析[J]. 電子與信息學報, 2017, 39(5): 1058–1063. doi: 10.11999/JEIT160846ZHOU Jianwei, LI Daojing, TIAN He, et al. Performance analysis on airship-borne passive radar based on conformal sparse array[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1058–1063. doi: 10.11999/JEIT160846 QIN Lilong, VOROBYOV S A, and DONG Zhen. Joint cancelation of autocorrelation sidelobe and cross correlation in MIMO-SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 931–935. doi: 10.1109/LGRS.2017.2688122 TRIDON D B, BACHMANN M, DE ZAN F, et al. Tandem-L observation concept - contributions and challenges of systematic monitoring of earth system dynamics[C]. Proceedings of the 18th International Radar Symposium, Prague, Czech Republic, 2017: 1–9. MA L, LI Z F, and LIAO G L. System error analysis and calibration methods for multi-channel SAR[J]. Progress in Electromagnetics Research, 2011, 112: 309–327. doi: 10.2528/PIER10120808 LIU Yanyang, CUI Lei, XU Youshuan, et al. A novel signal-cancellation-based channel phase bias calibration algorithm for spaceborne multi-channel HR WS SAR in azimuth[C]. 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, 2015: 494–497. LI Zhenfang, BAO Zheng, WANG Hongyang, et al. Performance improvement for constellation SAR using signal processing techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 436–452. doi: 10.1109/TAES.2006.1642562 LIU Aifei, LIAO Guisheng, XU Qing, et al. An improved array-error estimation method for constellation SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 90–94. doi: 10.1109/LGRS.2011.2161262 YANG Taoli, LI Zhenfang, LIU Yanyang, et al. Channel error estimation methods for multichannel SAR systems in azimuth[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 548–552. doi: 10.1109/LGRS.2012.2212873 楊桃麗, 李真芳, 劉艷陽, 等. 兩種星載高分辨寬測繪帶SAR系統(tǒng)通道相位誤差估計方法[J]. 電子學報, 2013, 41(5): 931–935. doi: 10.3969/j.issn.0372-2112.2013.05.016YANG Taoli, LI Zhenfang, LIU Yanyang, et al. Two channel phase error estimation methods for spaceborne HRWS SAR system[J]. Acta Electronica Sinica, 2013, 41(5): 931–935. doi: 10.3969/j.issn.0372-2112.2013.05.016 張福博, 劉梅. 基于頻域最小二乘APES的非均勻多基線SAR層析成像算法[J]. 電子與信息學報, 2012, 34(7): 1568–1573. doi: 10.3724/SP.J.1146.2011.01184ZHANG Fubo and LIU Mei. Uneven multi-baseline SAR tomography base on frequency domain least squares amplitude and phase estimation (APES)[J]. Journal of Electronics &Information Technology, 2012, 34(7): 1568–1573. doi: 10.3724/SP.J.1146.2011.01184 楊桃麗. 星載多通道高分辨寬測繪帶合成孔徑雷達成像處理技術研究[D]. [博士論文], 西安電子科技大學, 2014: 58–65.YANG Taoli. Study on spaceborne multi-channel high resolution and wide swath SAR imaging[D]. [Ph.D. dissertation], Xidian University, 2014: 58–65. RINCON R, FATOYINBO T, OSMANOGLU B, et al. Development of NASA’S next generation L-band digital beamforming synthetic aperture radar (DBSAR-2)[C]. Proceedings of EUSAR 2016: 11th European Synthetic Aperture Radar Conference 2016, Hamburg, Germany, 2016: 1–4. 范懷濤, 張志敏, 李寧. 基于特征分解的方位向多通道SAR相位失配校正方法[J]. 雷達學報, 2018, 7(3): 346–354. doi: 10.12000/JR17012FAN Huaitao, ZHANG Zhimin, and LI Ning. Channel phase mismatch calibration for multichannel in azimuth SAR imaging based on Eigen-structure method[J]. Journal of Radars, 2018, 7(3): 346–354. doi: 10.12000/JR17012 ZHANG Linjian, GAO Yesheng, and LIU Xingzhao. Fast channel phase error calibration algorithm for azimuth multichannel high-resolution and wide-swath synthetic aperture radar imaging system[J]. Journal of Applied Remote Sensing, 2017, 11(3): 035003. doi: 10.1117/1.JRS.11.035003 -