一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

候選標(biāo)記信息感知的偏標(biāo)記學(xué)習(xí)算法

陳鴻昶 謝天 高超 李邵梅 黃瑞陽

陳鴻昶, 謝天, 高超, 李邵梅, 黃瑞陽. 候選標(biāo)記信息感知的偏標(biāo)記學(xué)習(xí)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(10): 2516-2524. doi: 10.11999/JEIT181059
引用本文: 陳鴻昶, 謝天, 高超, 李邵梅, 黃瑞陽. 候選標(biāo)記信息感知的偏標(biāo)記學(xué)習(xí)算法[J]. 電子與信息學(xué)報(bào), 2019, 41(10): 2516-2524. doi: 10.11999/JEIT181059
Hongchang CHEN, Tian XIE, Chao GAO, Shaomei LI, Ruiyang HUANG. Candidate Label-Aware Partial Label Learning Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2516-2524. doi: 10.11999/JEIT181059
Citation: Hongchang CHEN, Tian XIE, Chao GAO, Shaomei LI, Ruiyang HUANG. Candidate Label-Aware Partial Label Learning Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2516-2524. doi: 10.11999/JEIT181059

候選標(biāo)記信息感知的偏標(biāo)記學(xué)習(xí)算法

doi: 10.11999/JEIT181059
基金項(xiàng)目: 國家自然科學(xué)基金(61601513)
詳細(xì)信息
    作者簡介:

    陳鴻昶:男,1964年生,教授,博士生導(dǎo)師,研究方向?yàn)橥ㄐ排c信息系統(tǒng),大數(shù)據(jù)處理分析

    謝天:男,1994年生,碩士生,研究方向?yàn)闄C(jī)器學(xué)習(xí)

    高超:男,1982年生,博士,研究方向?yàn)橛?jì)算機(jī)視覺,機(jī)器學(xué)習(xí)

    李邵梅:女,1982年生,博士,研究方向?yàn)橛?jì)算機(jī)視覺,機(jī)器學(xué)習(xí)

    黃瑞陽:男,1986年生,博士,研究方向?yàn)榫W(wǎng)絡(luò)大數(shù)據(jù)分析

    通訊作者:

    謝天 xietianxt@foxmail.com

  • 中圖分類號(hào): TP18

Candidate Label-Aware Partial Label Learning Algorithm

Funds: The National Natural Science Foundation of China (61601513)
  • 摘要: 在偏標(biāo)記學(xué)習(xí)中,示例的真實(shí)標(biāo)記隱藏在由一組候選標(biāo)記組成的標(biāo)記集中。現(xiàn)有的偏標(biāo)記學(xué)習(xí)算法在衡量示例之間的相似度時(shí),只基于示例的特征進(jìn)行計(jì)算,缺乏對(duì)候選標(biāo)記集信息的利用。該文提出一種候選標(biāo)記感知的偏標(biāo)記學(xué)習(xí)算法(CLAPLL),在構(gòu)建圖的階段有效地結(jié)合候選標(biāo)記集信息來衡量示例之間的相似度。首先,基于杰卡德距離和線性重構(gòu),計(jì)算出各個(gè)示例的標(biāo)記集之間的相似度,然后結(jié)合示例相似度和標(biāo)記集的相似度構(gòu)建相似度圖,并通過現(xiàn)有的基于圖的偏標(biāo)記學(xué)習(xí)算法進(jìn)行學(xué)習(xí)和預(yù)測(cè)。3個(gè)合成數(shù)據(jù)集和6個(gè)真實(shí)數(shù)據(jù)集上實(shí)驗(yàn)結(jié)果表明,該文方法相比于基線算法消歧準(zhǔn)確率提升了0.3%~16.5%,分類準(zhǔn)確率提升了0.2%~2.8%。
  • 圖  1  采用候選標(biāo)記集信息的消歧效果

    圖  2  消歧準(zhǔn)確率隨參數(shù)$p$的變化

    圖  3  分類準(zhǔn)確率隨參數(shù)$p$的變化

    圖  4  消歧準(zhǔn)確率隨參數(shù)$r$的變化

    圖  9  分類準(zhǔn)確率隨參數(shù)$k$的變化

    圖  6  消歧準(zhǔn)確率隨參數(shù)$\alpha $的變化

    圖  7  分類準(zhǔn)確率隨參數(shù)$\alpha $的變化

    圖  8  消歧準(zhǔn)確率隨參數(shù)$k$的變化

    圖  5  分類準(zhǔn)確率隨參數(shù)$r$的變化

    表  1  候選標(biāo)記信息感知的偏標(biāo)記學(xué)習(xí)算法偽代碼

     輸入:偏標(biāo)記數(shù)據(jù)集$D = \left\{ {({X_i},{S_i})|1 \le i \le m} \right\}$,最近鄰樣本數(shù)    $k$,標(biāo)記相似度權(quán)重$\alpha $
     訓(xùn)練階段:
     1 對(duì)特征矩陣${\text{X}} \in {{\text{R}}^{m \times d}}$進(jìn)行Z-score歸一化;
     2 根據(jù)式(1)求${{\text{w}}_j}$;
     3 根據(jù)${{\text{w}} _j}$構(gòu)建相似度圖${G_i}(V,E)$;
     4 switch v;
       case Jaccard:根據(jù)式(3)計(jì)算${{\text{u}}_j}$,并構(gòu)建候選標(biāo)記集相似度    圖${G_{\rm{c}}}(i,j)$, (CAP-J算法);
       case linear:根據(jù)式(4)計(jì)算${{\text{u}}_j}$,并構(gòu)建候選標(biāo)記集相似度     圖${G_{\rm{c}}}(i,j)$, (CAP-L算法);
       end switch
     5 根據(jù)式(7)計(jì)算最終相似度圖$G(i,j)$;
     6 結(jié)合現(xiàn)有圖模型偏標(biāo)記學(xué)習(xí)算法進(jìn)行消歧,得到消歧結(jié)果    $\mathop D\limits^ \wedge = \left\{ {({X_i},{{\widehat y}_i})|1 \le i \le m} \right\}$;
     測(cè)試階段:
     7 對(duì)于未見示例${x^*}$,根據(jù)式(8)計(jì)算得分類結(jié)果;
     輸出:消歧結(jié)果$\mathop D\limits^ \wedge = \left\{ {({X_i},{{\widehat y}_i})|1 \le i \le m} \right\}$和分類結(jié)果${y^*}$。
    下載: 導(dǎo)出CSV

    表  2  基線算法和本文算法復(fù)雜度比較

    算法復(fù)雜度實(shí)際復(fù)雜度
    基線算法$O({d^{\,\; 2} }{n^3}\lg (n))$$O({d^{\,\; 2} }{n^3}\lg (n))$
    本文算法(CAP-J)$O({d^{\,\; 2} }{n^3}\lg (n) + (s + 1){k^2})$$O({d^{\,\; 2} }{n^3}\lg (n))$
    本文算法(CAP-L)$O({d^{\,\; 2} }{n^3}\lg (n) + (sk + 1){k^2})$$O({d^{\,\; 2} }{n^3}\lg (n))$
    下載: 導(dǎo)出CSV

    表  3  真實(shí)偏標(biāo)記數(shù)據(jù)集的特征

    數(shù)據(jù)集樣本數(shù)特征數(shù)類別標(biāo)記數(shù)候選標(biāo)記數(shù)
    平均最小最大
    Lost1122108162.2313
    Birdsong499838132.1814
    MSRSCv2175848233.1617
    FG-NET1002262787.48211
    Yahoo! News229911632191.9115
    Soccer Player174722791712.09111
    下載: 導(dǎo)出CSV

    表  4  合成偏標(biāo)記數(shù)據(jù)集的特征

    數(shù)據(jù)集樣本數(shù)特征數(shù)類別標(biāo)記數(shù)參數(shù)設(shè)置
    Ecoli33678p={0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7, 0.8} r={1, 2, 3, 4, 5}
    Movement3609015
    CTG21262110
    下載: 導(dǎo)出CSV

    表  5  不同算法在真實(shí)偏標(biāo)記數(shù)據(jù)集上的消歧準(zhǔn)確率(%)

    數(shù)據(jù)集消歧準(zhǔn)確率(mean±std.)
    LostMSRCv2BirdSongFG-NETSoccer PlayerYahoo! News
    PLKNN67.54±0.0951.00±0.0968.69±0.0411.06±0.1352.60±0.0266.06±0.02
    CAP-JKNN73.60±0.1062.19±0.0877.14±0.0414.71±0.1569.55±0.0180.00±0.02
    CAP-LKNN73.38±0.1361.88±0.0976.67±0.0414.81±0.1769.22±0.0279.78±0.05
    PLKNN(監(jiān)督)84.93±0.0473.07±0.0284.29±0.1414.94±0.0590.65±0.0391.21±0.03
    IPAL84.01±0.1570.58±0.1583.61±0.0415.28±0.1967.65±0.0384.99±0.05
    CAP-JIPAL85.58±0.1771.25±0.2084.22±0.0415.40±0.1967.94±0.0285.33±0.04
    CAP-LIPAL85.39±0.2470.92±0.1284.40±0.0514.86±0.1767.89±0.0785.21±0.03
    IPAL(監(jiān)督)85.43±0.3276.43±0.2285.92±0.1015.53±0.1871.43±0.0586.43±0.06
    LALO75.05±1.2459.42±0.8978.14±0.7515.92±0.69
    CAP-JLALO76.80±1.1159.48±1.0978.02±0.8115.69±0.75
    CAP-LLALO80.22±1.0859.72±0.8278.24±0.6415.76±0.94
    LALO(監(jiān)督)84.53±1.5360.04±1.1479.25±0.8816.13±0.62
    下載: 導(dǎo)出CSV

    表  6  不同算法在真實(shí)偏標(biāo)記數(shù)據(jù)集上的分類準(zhǔn)確率(%)

    數(shù)據(jù)集消歧準(zhǔn)確率(mean±std.)
    LostMSRCv2BirdSongFG-NETSoccer PlayerYahoo! News
    PLKNN61.48±0.7844.12±0.3664.66±0.235.58±0.4249.55±0.0458.30±0.06
    CAP-JKNN64.01±0.6546.35±0.3866.01±0.266.24±0.3850.77±0.0961.18±0.05
    CAP-LKNN63.58±0.7246.14±0.4865.88±0.215.74±0.5650.43±0.0960.50±0.12
    PLKNN(監(jiān)督)69.26±0.4851.33±0.3068.49±0.136.98±0.2154.26±0.0561.53±0.08
    IPAL73.18±0.7953.08±0.3371.09±0.335.28±0.5554.84±0.1065.88±0.14
    CAP-JIPAL73.95±0.6853.35±0.5071.34±0.305.45±0.6055.00±0.1066.02±0.16
    CAP-LIPAL73.44±0.6852.61±0.7171.60±0.265.89±0.5754.46±0.1866.02±0.18
    IPAL (監(jiān)督)75.04±0.8255.71±0.4672.05±0.275.95±0.6255.38±0.1366.83±0.15
    LALO72.15±3.0450.13±2.0372.99±1.546.11±1.61
    CAP-JLALO73.02±2.8849.23±2.1073.00±1.625.96±1.19
    CAP-LLALO74.84±2.2050.27±3.1973.37±1.506.76±1.64
    LALO(監(jiān)督)76.68±2.1952.31±2.4974.87±1.267.03±1.29
    下載: 導(dǎo)出CSV
  • HüLLERMEIER E and BERINGER J. Learning from ambiguously labeled examples[J]. Intelligent Data Analysis, 2006, 10(5): 419–439. doi: 10.3233/IDA-2006-10503
    SONG Jingqi, LIU Hui, GENG Fenghuan, et al. Weakly-supervised classification of pulmonary nodules based on shape characters[C]. The 14th International Conference on Dependable, Autonomic and Secure Computing, The 14th International Conference on Pervasive Intelligence and Computing, The 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress, Auckland, New Zealand, 2016: 228–232.
    TANG Caizhi and ZHANG Minling. Confidence-rated discriminative partial label learning[C]. The 31st AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 2611–2617.
    TODA T, INOUE S, and UEDA N. Mobile activity recognition through training labels with inaccurate activity segments[C]. The 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Hiroshima, Japan, 2016: 57–64.
    YU Fei and ZHANG Minling. Maximum margin partial label learning[J]. Machine Learning, 2017, 106(4): 573–593. doi: 10.1007/s10994-016-5606-4
    LUO Jie and ORABONA F. Learning from candidate labeling sets[C]. The 23rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2010: 1504–1512.
    ZHANG Minling and YU Fei. Solving the partial label learning problem: An instance-based approach[C]. The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 4048–4054.
    FENG Lei and AN Bo. Leveraging latent label distributions for partial label learning[C]. The Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 2107–2113.
    COUR T, SAPP B, and TASKAR B. Learning from partial labels[J]. Journal of Machine Learning Research, 2011, 12: 1501–1536.
    ZHOU Zhihua. A brief introduction to weakly supervised learning[J]. National Science Review, 2018, 5(1): 44–53. doi: 10.1093/nsr/nwx106
    TOLDO R and FUSIELLO A. Robust multiple structures estimation with J-linkage[C]. The 10th European Conference on Computer Vision, Marseille, France, 2008: 537–547.
    DUA D and TANISKIDOU E K. UCI machine learning repository[EB/OL]. http://archive.ics.uci.edu/ml, 2017.
    ZENG Zinan, XIAO Shijie, JIA Kui, et al. Learning by associating ambiguously labeled images[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 708–715.
    GUILLAUMIN M, VERBEEK J, and SCHMID C. Multiple instance metric learning from automatically labeled bags of faces[C]. The 11th European Conference on Computer Vision, Heraklion, Greece, 2010: 634–647.
    ZHANG Minling, ZHOU Binbin, and LIU Xuying. Partial label learning via feature-aware disambiguation[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 1335–1344.
    BRIGGS F, FERN X Z, and RAICH R. Rank-loss support instance machines for MIML instance annotation[C]. The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 2012: 534–542.
    LIU Liping and DIETTERICH T G. A conditional multinomial mixture model for superset label learning[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 548–556.
    ZHANG Minling, YU Fei, and TANG Caizhi. Disambiguation-free partial label learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2155–2167. doi: 10.1109/TKDE.2017.2721942
    ZHANG Minling and YU Fei. Solving the partial label learning problem: An instance-based approach[C]. The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 4048–4054.
  • 加載中
圖(9) / 表(6)
計(jì)量
  • 文章訪問數(shù):  2746
  • HTML全文瀏覽量:  1431
  • PDF下載量:  70
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-11-20
  • 修回日期:  2019-04-21
  • 網(wǎng)絡(luò)出版日期:  2019-05-16
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回