一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于分類誤差一致性準(zhǔn)則的自適應(yīng)知識遷移

梁爽 杭文龍 馮偉 劉學(xué)軍

梁爽, 杭文龍, 馮偉, 劉學(xué)軍. 基于分類誤差一致性準(zhǔn)則的自適應(yīng)知識遷移[J]. 電子與信息學(xué)報(bào), 2019, 41(11): 2736-2743. doi: 10.11999/JEIT181054
引用本文: 梁爽, 杭文龍, 馮偉, 劉學(xué)軍. 基于分類誤差一致性準(zhǔn)則的自適應(yīng)知識遷移[J]. 電子與信息學(xué)報(bào), 2019, 41(11): 2736-2743. doi: 10.11999/JEIT181054
Shuang LIANG, Wenlong HANG, Wei FENG, Xuejun LIU. Adaptive Knowledge Transfer Based on Classification-error Consensus Regularization[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2736-2743. doi: 10.11999/JEIT181054
Citation: Shuang LIANG, Wenlong HANG, Wei FENG, Xuejun LIU. Adaptive Knowledge Transfer Based on Classification-error Consensus Regularization[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2736-2743. doi: 10.11999/JEIT181054

基于分類誤差一致性準(zhǔn)則的自適應(yīng)知識遷移

doi: 10.11999/JEIT181054
基金項(xiàng)目: 國家自然科學(xué)基金(61802177),江蘇省高校自然科學(xué)研究面上項(xiàng)目(18KJB520020),南京郵電大學(xué)引進(jìn)人才科研啟動基金(NY219034),江蘇省重點(diǎn)研發(fā)計(jì)劃(BE2015697)
詳細(xì)信息
    作者簡介:

    梁爽:女,1987年生,講師,研究方向?yàn)闄C(jī)器學(xué)習(xí)、信號處理

    杭文龍:男,1988年生,講師,研究方向?yàn)闄C(jī)器學(xué)習(xí)、模式識別

    馮偉:男,1995年生,碩士生,研究方向機(jī)器學(xué)習(xí)、模式識別

    劉學(xué)軍:男,1970年生,教授,碩士生導(dǎo)師,研究方向?yàn)閿?shù)據(jù)挖掘、大數(shù)據(jù)分布式處理

    通訊作者:

    杭文龍 wlhang@njtech.edu.cn

  • 中圖分類號: TP181

Adaptive Knowledge Transfer Based on Classification-error Consensus Regularization

Funds: The National Nature Science Foundation of China (61802177), The Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (18KJB520020), NUPTSF (NY219034), Key Research and Development Program of Jiangsu Province (BE2015697)
  • 摘要: 目前大多數(shù)遷移學(xué)習(xí)方法在利用源域數(shù)據(jù)輔助目標(biāo)域數(shù)據(jù)建模時,通常假設(shè)源域中的數(shù)據(jù)均與目標(biāo)域數(shù)據(jù)相關(guān)。然而在實(shí)際應(yīng)用中,源域中的數(shù)據(jù)并非都與目標(biāo)域數(shù)據(jù)的相關(guān)程度一致,若基于上述假設(shè)往往會導(dǎo)致負(fù)遷移效應(yīng)。為此,該文首先提出分類誤差一致性準(zhǔn)則(CCR),對源域與目標(biāo)域分類誤差的概率分布積分平方誤差進(jìn)行最小化度量。此外,該文提出一種基于CCR的自適應(yīng)知識遷移學(xué)習(xí)方法(CATL),該方法可以快速地從源域中自動確定出與目標(biāo)域相關(guān)的數(shù)據(jù)及其權(quán)重,以輔助目標(biāo)域模型的構(gòu)建,使其能在提高知識遷移效率的同時緩解負(fù)遷移學(xué)習(xí)效應(yīng)。在真實(shí)圖像以及文本數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果驗(yàn)證了CATL方法的優(yōu)勢。
  • 圖  1  6種對比算法在文本數(shù)據(jù)集上的分類精度

    表  1  圖像數(shù)據(jù)集USPS及MNIST中源域數(shù)據(jù)與目標(biāo)域數(shù)據(jù)的詳細(xì)設(shè)置

    任務(wù)源域數(shù)據(jù)目標(biāo)域數(shù)據(jù)
    正類負(fù)類正類負(fù)類
    1USPS7USPS9MNIST7MNIST9
    2USPS4USPS9MNIST4MNIST9
    3USPS0USPS6MNIST0MNIST6
    下載: 導(dǎo)出CSV

    表  2  文本數(shù)據(jù)集20-Newsgroups中源域數(shù)據(jù)與目標(biāo)域數(shù)據(jù)的詳細(xì)設(shè)置

    任務(wù)源域數(shù)據(jù)目標(biāo)域數(shù)據(jù)
    正類負(fù)類正類負(fù)類
    1comp.graphicsrec.autoscomp.os.ms-windows.miscrec.motorcycles
    2comp.sys.ibm.pc.hardwarerec.sport.baseballcomp.sys.mac.hardwarerec.sport.hokey
    3sci.crypttalk.politics.gunssci.electronicstalk.politics.mideast
    4sci.medtalk.politics.miscsci.spacetalk.religion.misc
    5rec.autostalk.politics.gunsrec.motorcyclestalk.politics.mideast
    6rec.sport.baseballtalk.politics.miscrec.sport.hokeytalk.religion.misc
    下載: 導(dǎo)出CSV

    表  3  各種算法在圖像任務(wù)上的分類精度

    任務(wù)已標(biāo)注樣本LSSVMCDSVMASVMTrAdaBoostSTMPRIFCATL2
    140.52870.56110.59130.57990.60180.62450.6359
    60.55200.58000.60940.61330.62980.63840.6477
    80.58970.61120.62660.60070.63190.64210.6528
    100.60300.63920.65020.62130.64870.65390.6672
    120.63810.64610.63830.65880.66430.67530.6791
    140.65410.65870.67540.66820.69010.69820.7014
    240.53540.57430.59980.58870.59830.62230.6133
    60.58970.59920.62930.59030.64260.64780.6520
    80.62760.63870.64920.66900.68030.68930.6927
    100.65080.66410.68430.69050.70670.70290.7168
    120.68920.66980.69880.71230.72340.73260.7387
    140.70980.71560.72070.70760.72660.73910.7421
    340.65780.69030.70260.68730.72350.74720.7492
    60.70130.74450.75290.73540.75410.76320.7726
    80.74520.76950.77210.74550.7618077260.7829
    100.77620.78030.77890.78360.79280.79180.8193
    120.79230.79440.80340.79940.82880.81720.8301
    140.82340.82130.81780.81450.83970.82630.8452
    下載: 導(dǎo)出CSV
  • DENG Zhaohong, JIANG Yizhang, CHOI K S, et al. Knowledge-leverage-based TSK fuzzy system modeling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(8): 1200–1212. doi: 10.1109/TNNLS.2013.2253617
    DAI Wenyuan, YANG Qiang, XUE Guirong, et al. Boosting for transfer learning[C]. The 24th International Conference on Machine Learning, Corvalis, USA, 2007: 193–200.
    JIANG Yizhang, DENG Zhaohong, CHUNG F L, et al. Recognition of epileptic EEG signals using a novel multiview TSK fuzzy system[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(1): 3–20. doi: 10.1109/TFUZZ.2016.2637405
    ZHUANG Fuzhen, LUO Ping, DU Changying, et al. Triplex transfer learning: Exploiting both shared and distinct concepts for text classification[J]. IEEE Transactions on Cybernetics, 2014, 44(7): 1191–1203. doi: 10.1109/TCYB.2013.2281451
    PAN S J, NI Xiaochuan, SUN Jiantao, et al. Cross-domain sentiment classification via spectral feature alignment[C]. Proceedings of the 19th International Conference on World Wide Web, Raleigh, USA, 2010: 751–760.
    ZANG Shaofei, CHENG Yuhu, WANG Xuesong, et al. Semi-supervised transfer discriminant analysis based on cross-domain mean constraint[J]. Artificial Intelligence Review, 2018, 49(4): 581–595. doi: 10.1007/s10462-016-9533-3
    WANG Guanjin, ZHANG Guangquan, CHOI K S, et al. Deep additive least squares support vector machines for classification with model transfer[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(7): 1527–1540. doi: 10.1109/TSMC.2017.2759090
    YANG Jun, YAN Rong, and HAUPTMANN A G. Adapting SVM classifiers to data with shifted distributions[C]. The Seventh IEEE International Conference on Data Mining Workshops, Omaha, USA, 2007: 69–76.
    JIANG Yizhang, DENG Zhaohong, CHUNG F L, et al. Realizing two-view TSK fuzzy classification system by using collaborative learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(1): 145–160. doi: 10.1109/TSMC.2016.2577558
    CHU Wensheng, DE LA TORRE F, and COHN J F. Selective transfer machine for personalized facial action unit detection[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3515–3522.
    GRETTON A, SMOLA A, HUANG Jiayuan, et al. Covariate Shift by Kernel Mean Matching[M]. QUI?ONERO-CANDELA J, SUGIYAMA M, SCHWAIGHOFER A, et al. Dataset Shift in Machine Learning. Cambridge, USA: MIT Press, 2009: 131–160.
    CHENG Yuhu, WANG Xuesong, and CAO Ge. Multi-source tri-training transfer learning[J]. IEICE Transactions on Information and Systems, 2014, E97-D(6): 1668–1672. doi: 10.1587/transinf.e97.d.1668
    WANG Yunyun, ZHAI Jie, LI Yun, et al. Transfer learning with partial related " instance-feature” knowledge[J]. Neurocomputing, 2018, 310: 115–124. doi: 10.1016/j.neucom.2018.05.029
    CHEN Minmin, XU Zhixiang, WEINBERGER K Q, et al. Marginalized denoising autoencoders for domain adaptation[C]. The 29th International Conference on Machine Learning, Edinburgh, Scotland, 2012: 1627–1634.
    ZHOU J T, PAN S J, TSANG I W, et al. Hybrid heterogeneous transfer learning through deep learning[C]. The 28th AAAI Conference on Artificial Intelligence, Québec City, Canada, 2014: 2213–2219.
    GLOROT X, BORDES A, and BENGIO Y. Domain adaptation for large-scale sentiment classification: A deep learning approach[C]. The 28th International Conference on Machine Learning, Bellevue, Washington, USA, 2011: 513–520.
    LONG Mingsheng, WANG Jianmin, CAO Yue, et al. Deep learning of transferable representation for scalable domain adaptation[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(8): 2027–2040. doi: 10.1109/TKDE.2016.2554549
    PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065–1076. doi: 10.1214/aoms/1177704472
    DENG Zhaohong, CHUNG F L, and WANG Shitong. FRSDE: Fast reduced set density estimator using minimal enclosing ball approximation[J]. Pattern Recognition, 2008, 41(4): 1363–1372. doi: 10.1016/j.patcog.2007.09.013
    TOMMASI T, ORABONA F, and CAPUTO B. Learning categories from few examples with multi model knowledge transfer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 928–941. doi: 10.1109/TPAMI.2013.197
    LACOSTE-JULIEN S, SCHMIDT M, and BACH F. A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method[J]. arXiv:1212.2002, 2012.
    LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Transfer learning with graph co-regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 1805–1818. doi: 10.1109/TKDE.2013.97
    SUYKENS J A K and VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293–300. doi: 10.1023/a:1018628609742
    BART E and ULLMAN S. Cross-generalization: Learning novel classes from a single example by feature replacement[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 672–679.
    GU Xiaoqing, CHUNG F L, and WANG Shitong. Bayesian Takagi-Sugeno-Kang fuzzy classifier[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6): 1655–1671. doi: 10.1109/TFUZZ.2016.2617377
  • 加載中
圖(1) / 表(3)
計(jì)量
  • 文章訪問數(shù):  2572
  • HTML全文瀏覽量:  1422
  • PDF下載量:  58
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-11-20
  • 修回日期:  2019-04-30
  • 網(wǎng)絡(luò)出版日期:  2019-05-16
  • 刊出日期:  2019-11-01

目錄

    /

    返回文章
    返回