室內(nèi)環(huán)境中基于天牛須尋優(yōu)的普適定位方法
doi: 10.11999/JEIT181021
-
1.
遼寧工程技術(shù)大學(xué)電子與信息工程學(xué)院 葫蘆島 125105
-
2.
吉林大學(xué)通信工程學(xué)院 ??長春 ??130022
Universal Localization Algorithm Based on Beetle Antennae Search in Indoor Environment
-
1.
School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China
-
2.
College of Communication Engineering, Jilin University, Changchun 130022, China
-
摘要: 在復(fù)雜的室內(nèi)環(huán)境中,測得的接收信號強(qiáng)度(RSS)值會出現(xiàn)不同程度的波動,導(dǎo)致無法準(zhǔn)確地刻畫出無線信號傳播模型。為了解決這個問題,在基于Wi-Fi測距定位模型下,該文提出一種普適的粗粒度定位方法。該方法通過對測量到的RSS值進(jìn)行擬合,以此獲取信號的傳播模型;在此基礎(chǔ)上計算出未知節(jié)點與接入點(AP)的距離,再利用天牛須算法實現(xiàn)未知節(jié)點定位,通過仿真驗證此傳播模型的性能以及該優(yōu)化算法的有效性。Abstract: In complex indoor environment, the measured Received Signal Strength (RSS) values will fluctuate in different degrees, which lead to inaccurate characterization of wireless signal propagation model. To solve this problem, a universal coarse grained localization method is proposed based on the Wi-Fi ranging location model. This method gets the signal propagation model by fitting the measured RSS value. On this basis, the distance between the unknown node and the Access Point (AP) is calculated, then the location of the unknown node is realized by the beetle antennae search algorithm. The performance of the propagation model and the effectiveness of the optimization algorithm are verified by simulation.
-
表 1 本文算法與經(jīng)典算法對比
真實位置 測量位置 誤差(m) 收斂速度 BAS-DSPM (0, 0) (0.7123, 1.4437) 1.6098 迭代27次趨于平穩(wěn) PSO-DSPM (0, 0) (1.3654, –1.8031) 2.2617 迭代108次趨于平穩(wěn) PSO-經(jīng)典測距模型 (0, 0) (–2.0462, 3.4623) 4.0217 迭代98次趨于平穩(wěn) 下載: 導(dǎo)出CSV
-
MA Lin and XU Yubin. Received signal strength recovery in green WLAN indoor positioning system using singular value thresholding[J]. Sensors, 2015, 15(1): 1292–1311. doi: 10.3390/s150101292 SEN S, LEE J, KIM K H, et al. Avoiding multipath to revive inbuilding WiFi localization[C]. Proceedings of ACM 11th Annual International Conference on Mobile Systems, Applications, and Services, Taipei, China, 2013: 249–262. doi: 10.1145/2462456.2464463. 陳冰, 楊小玲. 一種基于概率密度的WLAN接入點定位的算法[J]. 電子與信息學(xué)報, 2015, 37(4): 855–862. doi: 10.11999/JEIT140661CHEN Bing and YANG Xiaoling. A WLAN access point localization algorithm based on probability density[J]. Journal of Electronics &Information Technology, 2015, 37(4): 855–862. doi: 10.11999/JEIT140661 錢志鴻, 孫大洋, LEUNG V. 無線網(wǎng)絡(luò)定位綜述[J]. 計算機(jī)學(xué)報, 2016, 39(6): 1237–1256. doi: 10.11897/SP.J.1016.2016.01237QIAN Zhihong, SUN Dayang, and LEUNG V. A survey on localization model in wireless networks[J]. Chinese Journal of Computers, 2016, 39(6): 1237–1256. doi: 10.11897/SP.J.1016.2016.01237 BAHL P and PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system[C]. Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Tel Aviv, Israel, 2000: 775–784. doi: 10.1109/INFCOM.2000.832252. 陳嶺, 許曉龍, 楊清, 等. 基于三次樣條插值的無線信號強(qiáng)度衰減模型[J]. 浙江大學(xué)學(xué)報: 工學(xué)版, 2011, 45(9): 1521–1527, 1538. doi: 10.3785/j.issn.1008-973X.2011.09.003CHEN Ling, XU Xiaolong, YANG Qing, et al. Wireless signal strength propagation model base on cubic spline interpolation[J]. Journal of Zhejiang University:Engineering Science, 2011, 45(9): 1521–1527, 1538. doi: 10.3785/j.issn.1008-973X.2011.09.003 LIM H, KUNG L C, HOU J C, et al. Zero-Configuration indoor localization over IEEE 802.11 wireless infrastructure[J]. Wireless Networks, 2010, 16(2): 405–420. doi: 10.1007/s11276-008-0140-3 JI Yiming, BIAZ S, PANDEY S, et al. ARIADNE: A dynamic indoor signal map construction and localization system[C]. Proceedings of the 4th ACM International Conference on Mobile Systems, Applications and Services, Uppsala, Sweden, 2006: 151–164. doi: 10.1145/1134680.1134697. JUN J, HE Liang, GU Yu, et al. Low-overhead WiFi fingerprinting[J]. IEEE Transactions on Mobile Computing, 2018, 17(3): 590–603. doi: 10.1109/TMC.2017.2737426 ZOU Han, JIN Ming, JIANG Hao, et al. WinIPS: WiFi-based non-Intrusive indoor positioning system with online radio map construction and adaptation[J]. IEEE Transactions on Wireless Communications, 2017, 16(12): 8118–8130. doi: 10.1109/TWC.2017.2757472 WU Chenshu, YANG Zheng, and XIAO Chaowei. Automatic radio map adaptation for indoor localization using smartphones[J]. IEEE Transactions on Mobile Computing, 2018, 17(3): 517–528. doi: 10.1109/TMC.2017.2737004 AHN J and HAN D. Crowd-assisted radio map construction for Wi-Fi positioning systems[C]. Proceedings of 2017 International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017: 1–8. doi: 10.1109/IPIN.2017.8115872. LI Qiyue, LI Wei, SUN Wei, et al. Fingerprint and assistant nodes based Wi-Fi localization in complex indoor environment[J]. IEEE Access, 2016, 4: 2993–3004. doi: 10.1109/ACCESS.2016.2579879 ZHANG Wei, HUA Xianghong, YU Kegen, et al. Domain clustering based WiFi indoor positioning algorithm[C]. Proceedings of 2016 International Conference on Indoor Positioning and Indoor Navigation, Alcala de Henares, Spain, 2016: 1–5. doi: 10.1109/IPIN.2016.7743641. 王碩朋, 楊鵬, 孫昊. 基于聲音位置指紋的室內(nèi)聲源定位方法[J]. 北京工業(yè)大學(xué)學(xué)報, 2017, 43(2): 224–229.WANG Shuopeng, YANG Peng, and SUN Hao. Indoor sound-position fingerprint method based on scenario analysis[J]. Journal of Beijing University of Technology, 2017, 43(2): 224–229. 劉影, 賈迪, 王和章. 復(fù)雜環(huán)境下基于CFSFDP的自適應(yīng)室內(nèi)定位方法[J]. 信號處理, 2018, 34(4): 465–475.LIU Ying, JIA Di, and WANG Hezhang. Adaptive indoor localization algorithm of based on CFSFDP in complex environment[J]. Journal of Signal Processing, 2018, 34(4): 465–475. JIANG Xiangyuan and LI Shuai. BAS: Beetle antennae search algorithm for optimization problems[J]. arXiv: 1710.10724, 2017. -