基于高超聲速平臺(tái)前斜視多通道SAR-GMTI雜波抑制方法
doi: 10.11999/JEIT181002
-
1.
西安電子科技大學(xué)雷達(dá)信號(hào)處理國(guó)家重點(diǎn)實(shí)驗(yàn)室 西安 710071
-
2.
通信網(wǎng)信息傳輸與分發(fā)技術(shù)重點(diǎn)實(shí)驗(yàn)室 石家莊 050081
Multi-channel SAR-GMTI Clutter Suppression Method Based onHypersonic Platform Forward Squint
-
1.
National Key Technology of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
2.
Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory, Shijiazhuang 050081, China
-
摘要:
針對(duì)高超聲速(HSV)平臺(tái)雷達(dá)系統(tǒng),該文提出一種基于高超聲速平臺(tái)前斜視多通道合成孔徑雷達(dá)地面動(dòng)目標(biāo)檢測(cè)(SAR-GMTI)雜波抑制方法。該方法先進(jìn)行時(shí)域距離走動(dòng)校正和距離壓縮,并補(bǔ)償距離向通道相位誤差實(shí)現(xiàn)距離向包絡(luò)對(duì)齊;然后再對(duì)方位多普勒擴(kuò)展的信號(hào)進(jìn)行3階線調(diào)頻傅里葉變換(CFT)壓縮,并補(bǔ)償方位向通道相位誤差實(shí)現(xiàn)方位向包絡(luò)對(duì)齊;接著在距離時(shí)域-方位CFT域利用數(shù)字波束形成(DBF)技術(shù)對(duì)雜波及其模糊分量置零進(jìn)行空時(shí)自適應(yīng)處理(STAP),從而可以有效抑制靜止雜波及其模糊分量并提取出無(wú)模糊的運(yùn)動(dòng)目標(biāo)回波信號(hào)。
-
關(guān)鍵詞:
- 合成孔徑雷達(dá)地面動(dòng)目標(biāo)檢測(cè) /
- 高超聲速飛行器 /
- 前斜視 /
- 多普勒模糊 /
- 空時(shí)自適應(yīng)處理
Abstract:According to the HyperSonic Vehicle (HSV) borne radar platform system, a multi-channel SAR-GMTI clutter suppression method is presented based on hypersonic platform forward squint mode. First, range walk correction and range compression are completed in the time domain, and the distance envelope is aligned simultaneously with phase error compensation. Then, the Doppler extended signal is compressed by three-order azimuth Chirp Fourier Transform (CFT), and the azimuth envelope of the echo is aligned with phase error compensation simultaneously. Next, the Digital Beam Forming (DBF) technology is applied to the range time-azimuth CFT domain by nulling the clutter and its ambiguous components to achieve Space-Time Adaptive Processing (STAP). The stationary clutter and its ambiguous components can be suppressed effectively and the echo signs of the moving target without blurring can be extracted.
-
表 1 仿真參數(shù)
參數(shù)名稱 載頻${f_{\rm{c}}}$ 斜視角 平臺(tái)高度H 中心斜距R 距離分辨率 信號(hào)多普勒帶寬 重頻PRF 平臺(tái)速度V 相鄰?fù)ǖ篱g距d 方位分辨率 參數(shù)值 10 GHz 50° 30 km 60 km 1 m 1530 Hz 554 Hz 2380 m/s 1.5 m 1 m 下載: 導(dǎo)出CSV
-
WANG Wenqin. Near-space vehicle-borne SAR with reflector antenna for high-resolution and wide-swath remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 338–348. doi: 10.1109/TGRS.2011.2158224 XU Gang, XING Mengdao, ZHANG Lei, et al. Robust autofocusing approach for highly squinted SAR imagery using the extended wavenumber algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5031–5046. doi: 10.1109/TGRS.2013.2276112 XU Huajian, YANG Zhiwei, TIAN Min, et al. An extended moving target detection approach for high-resolution multichannel SAR-GMTI systems based on enhanced shadow-aided decision[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 715–729. doi: 10.1109/TGRS.2017.2754098 WANG Yu, CAO Yunhe, PENG Zhigang, et al. Clutter suppression and GMTI for hypersonic vehicle borne SAR system with MIMO antenna[J]. IET Signal Processing, 2017, 11(8): 909–915. doi: 10.1049/iet-spr.2017.0193 XU Jia, HUANG Zuzhen, WANG Zhirui, et al. Radial velocity retrieval for multichannel SAR moving targets with time-space Doppler deambiguity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 35–48. doi: 10.1109/TGRS.2017.2720692 HUANG Yan, LIAO Guisheng, XU Jingwei, et al. GMTI and parameter estimation for MIMO SAR system via fast interferometry RPCA method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1774–1787. doi: 10.1109/TGRS.2017.2768243 WANG Guanqiong, LI Jingwen, and WEI Yang. Influence factors analysis of SAR-GMTI system performance[J]. Applied Mechanics and Materials, 2013, 380-384: 692–696. doi: 10.4028/www.scientific.net/AMM.380-384.692 YANG Taoli, WANG Yong, and LI Wei. A moving target imaging algorithm for HRWS SAR/GMTI systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1147–1157. doi: 10.1109/TAES.2017.2667858 邢孟道, 孫光才, 李學(xué)仕. 用于高分辨率寬測(cè)繪帶SAR系統(tǒng)的SAR/GMTI處理方法研究[J]. 雷達(dá)學(xué)報(bào), 2015, 4(4): 375–385. doi: 10.12000/JR15096XING Mengdao, SUN Guangcai, and LI Xueshi. Study on SAR/GMTI processing for high-resolution wide-swath SAR system[J]. Journal of Radars, 2015, 4(4): 375–385. doi: 10.12000/JR15096 吳明宇, 楊桃麗, 吳順君, 等. 星載多通道高分辨率寬測(cè)繪帶SAR系統(tǒng)運(yùn)動(dòng)目標(biāo)檢測(cè)方法[J]. 電子與信息學(xué)報(bào), 2014, 36(2): 441–444. doi: 10.3724/SP.J.1146.2013.00465WU Mingyu, YANG Taoli, WU Shunjun, et al. Ground moving target indication for spaceborne multi-channel high resolution wide swath SAR system[J]. Journal of Electronics &Information Technology, 2014, 36(2): 441–444. doi: 10.3724/SP.J.1146.2013.00465 XIA Xianggen. Discrete chirp-Fourier transform and its application to chirp rate estimation[J]. IEEE Transactions on Signal Processing, 2000, 48(11): 3122–3133. doi: 10.1109/78.875469 XIA Meng and YANG Xiaoniu. Moving target parameter estimation of spaceborne SAR-GMTI based on the analysis of acceleration[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1242–1246. doi: 10.1109/CIE-Radar.2011.6159781. SUWA K, YAMAMOTO K, TSUCHIDA M, et al. Image-based target detection and radial velocity estimation methods for multichannel SAR-GMTI[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1325–1338. doi: 10.1109/TGRS.2016.2622712 -