S波段高分辨寬幅SAR輻射定標及誤差分析方法
doi: 10.11999/JEIT180983
-
中國科學院電子學研究所 北京 100190
基金項目: 國家自然科學基金(61201405),中國科學院青年創(chuàng)新促進會(2017170)
A Radiometric Calibration and Error Analysis Method for HWRS SAR at S-band
-
Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
Funds: The National Natural Science Foundation of China (61201405), The Youth Innovation Promotion Association of Chinese Academy of Sciences (2017170)
-
摘要: 合成孔徑雷達(SAR)系統的輻射定標可以構建SAR圖像與地物后向散射截面積(RCS)的關系,反演目標物理特性,滿足SAR定量化遙感需求。相對于其它波段,S波段SAR的定量化遙感工作罕見報道。該文利用已知SAR及平臺參數進行S波段SAR輻射定標處理,首先推得了圖像像素值與目標后向散射系數的關系,接下來詳細分析了各項誤差對定標精度的影響,給出了天線指向誤差對定標精度影響的解析表達式。該文的分析有利于建立各參數與輻射定標精度的關系,方便設計時候的誤差分配。該文給出了草地、道路和平靜水面的S波段后向散射截面積統計值。最終實際數據處理結果表明,該系統利用該定標方法可以在20°的視角范圍內實現較高的絕對輻射精度。Abstract: The radiometric calibration of Synthetic Aperture Radar (SAR) can establish a mapping relationship between SAR image and Radar Cross Section (RCS) of ground objects, which benefits the inversion of target physical properties, and further meets the needs of quantitative remote sensing. Compared with other wavebands, the reports about SAR works in S-band are rare. This paper focuses on the radiometric calibration of radar at S-band by using the known parameters of radar and plane. Firstly, the relationship between image pixel intensity and RCS of target is derived. Then, a detailed analysis on each error component is implemented, in which, the affection of antenna direction on radiometric calibration precision is given by the analytic expression. The analysis and simulation is propitious to error allocation during the design period. In addition, the mean RCS statistics of grass, road and calm water are given. The real data processing results show that a sufficient accuracy in 20° view angle can be achieved by using the radiometric calibration method.
-
表 1 雷達及飛行參數表
參數 數值 平均功率(W) 19.2 距離范圍(m) 3450~6250 視角范圍(°) 48~70 采樣頻率(MHz) 400 波長(m) 0.09375 距離采樣間隔(m) 0.375 接收機增益(dB) 67 飛機速度(m/s) 70 下載: 導出CSV
表 2 定標器RCS測量結果(dB)
像素值 絕對輻射精度 定標圖 檢驗圖 定標圖 檢驗圖 1°誤差圖 T1 128.8 128.2 20.5 19.9 18.7 T2 128.4 128.4 20.1 20.0 19.0 T3 128.4 128.7 20.1 20.3 19.3 T4 128.9 129.3 20.6 21.0 20.1 T5 129.1 129.5 20.8 21.2 20.9 T6 129.1 129.4 20.8 21.0 21.4 T7 128.9 129.0 20.6 20.6 22.0 T8 128.6 128.6 20.3 20.2 21.9 T9 128.3 128.7 20.0 20.3 22.7 T10 128.3 128.6 20.0 20.2 22.4 下載: 導出CSV
-
FREEMAN A. SAR calibration: An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(6): 1107–1121. doi: 10.1109/36.193786 SCHWERDT M, HOUNAM D, ALVAREZ-PEREZ J L, et al. TerraSAR-X: Calibration concept of a multiple mode high resolution SAR[C]. The 25th International Geoscience and Remote Sensing Symposium, 2005, Seoul, Korea, 2005: 4874–4877. CHEN Quan, LI Zhen, ZHANG Ping, et al. A preliminary evaluation of the GaoFen-3 SAR radiation characteristics in land surface and compared with radarsat-2 and Sentinel-1A[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(7): 1040–1044. doi: 10.1109/LGRS.2018.2821238 ZHANG Linjian, GAO Yesheng, WANG Kaizhi, et al. A subspace algorithm of calibrating channel gain and phase errors for HRWS SAR imaging[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 269–272. LI Huimin, MOUCHE A, STOPA J E, et al. Calibration of the normalized Radar Cross Section for Sentinel-1 wave mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1415–1522. doi: 10.1109/TGRS.2018.2867035 GUCCIONE P, SCAGLIOLA M, and GIUDICI D. Low-frequency SAR radiometric calibration and antenna pattern estimation by using stable point targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 635–646. doi: 10.1109/TGRS.2017.2752228 SCHMIDT K, RAMON N T, and SCHWERDT M. Radiometric accuracy and one-year-stability of sentinel-1A determined using point targets[C]. The 47th European Microwave Conference, Nuremberg, Germany, 2017: 1075–1078. doi: 10.23919/EuMC.2017.8231058. SCHWERDT M, BRAUTIGAM B, BACHMANN M, et al. Final TerraSAR-X calibration results based on novel efficient methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 677–689. doi: 10.1109/TGRS.2009.2035308 SCHWERDT M, BRAEUTIGAM B, BACHMANN M, et al. TerraSAR-X calibration results[C]. 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008: 1–4. TOUZI R, HAWKINS R K, and COTO S. High-precision assessment and calibration of polarimetric RadarSAT-2 SAR using transponder measurements[J]. IEEE Transaction on Geoscience and Remote Sensing, 2013, 51(1): 487–503. doi: 10.1109/TGRS.2012.2201946 SHEN Ting, LI Jun, WANG Zhirui, et al. The airborne X-SAR calibration with high resolution[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2017: 1–5. 汪偉, 李軍, 胡慶榮. 基于點目標的機載毫米波SAR輻射定標[C]. 第三屆高分辨率對地觀測學術年會分會論文集, 北京, 2014: 502–513 周曉, 曾琪明, 焦健, 等. 星載SAR傳感器外場定標實驗研究—以TerraSAR-X衛(wèi)星為例[J]. 遙感技術與應用, 2014, 29(5): 711–718.ZHOU Xiao, ZENG Qiming, JIAO Jian, et al. Research on Space-borne SAR field calibration experiment—A case study of TerraSAR-X field calibration[J]. Remote Sensing Technology and Application, 2014, 29(5): 711–718. 鄭晨, 黃磊, 陳權. 點目標的機載SAR輻射定標實驗精度分析[J]. 遙感信息, 2015, 30(4): 14–19. doi: 10.3969/j.issn.1000-3177.2015.04.003ZHENG Chen, HUANG Lei, and CHEN Quan. Accuracy of airborne SAR radiometric calibration with point target[J]. Remote Sensing Information, 2015, 30(4): 14–19. doi: 10.3969/j.issn.1000-3177.2015.04.003 ULABY F T and DOBSON M C. Handbook of Radar Scattering Statistics for Terrain[M]. Norwood, MA: Artech House, Inc., 1989: 173–177. -