基于多尺度稠密殘差網(wǎng)絡(luò)的JPEG壓縮偽跡去除方法
doi: 10.11999/JEIT180963
-
1.
燕山大學(xué)信息科學(xué)與工程學(xué)院 秦皇島 066004
-
2.
河北省信息傳輸與信號(hào)處理重點(diǎn)實(shí)驗(yàn)室 秦皇島 066004
JPEG Compression Artifacts Reduction Algorithm Based on Multi-scale Dense Residual Network
-
1.
Institute of Information Science and Technology, Yanshan University, Qinhuangdao 066004, China
-
2.
Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
-
摘要: JPEG在高壓縮比的情況下,解壓縮后的圖像會(huì)產(chǎn)生塊效應(yīng)、邊緣振蕩效應(yīng)和模糊,嚴(yán)重影響了圖像的視覺(jué)效果。為了去除JPEG壓縮偽跡,該文提出了多尺度稠密殘差網(wǎng)絡(luò)。首先把擴(kuò)張卷積引入到殘差網(wǎng)絡(luò)的稠密塊中,利用不同的擴(kuò)張因子,使其形成多尺度稠密塊;然后采用4個(gè)多尺度稠密塊將網(wǎng)絡(luò)設(shè)計(jì)成包含2條支路的結(jié)構(gòu),其中后一條支路用于補(bǔ)充前一條支路沒(méi)有提取到的特征;最后采用殘差學(xué)習(xí)的方法來(lái)提高網(wǎng)絡(luò)的性能。為了提高網(wǎng)絡(luò)的通用性,采用具有不同壓縮質(zhì)量因子的聯(lián)合訓(xùn)練方式對(duì)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,針對(duì)不同壓縮質(zhì)量因子訓(xùn)練出一個(gè)通用模型。經(jīng)實(shí)驗(yàn)表明,該文方法不僅具有較高的JPEG壓縮偽跡去除性能,且具有較強(qiáng)的泛化能力。Abstract: In the case of high compression rates, the JPEG decompressed image can produce blocking artifacts, ringing effects and blurring, which affect seriously the visual effect of the image. In order to remove JPEG compression artifacts, a multi-scale dense residual network is proposed. Firstly, the proposed network introduces the dilate convolution into a dense block and uses different dilation factors to form multi-scale dense blocks. Then, the proposed network uses four multi-scale dense blocks to design the network into a structure with two branches, and the latter branch is used to supplement the features that are not extracted by the previous branch. Finally, the proposed network uses residual learning to improve network performance. In order to improve the versatility of the network, the network is trained by a joint training method with different compression quality factors, and a general model is trained for different compression quality factors. Experiments demonstrate that the proposed algorithm not only has high JPEG compression artifacts reduction performance, but also has strong generalization ability.
-
Key words:
- JPEG compression /
- Compression artifacts /
- Multi-scale dense blocks /
- Dilate convolution
-
表 1 ARCNN的4個(gè)模型在LIVE1數(shù)據(jù)集上的PSNR(dB)對(duì)比
模型 QF 10 20 30 40 JPEG 27.77 30.07 31.41 32.35 ARCNN(${\rm{QF}} = 10$) 28.96 30.79 31.51 31.90 ARCNN(${\rm{QF}} = 20$) 28.78 31.30 32.53 33.30 ARCNN(${\rm{QF}} = 30$) 28.60 31.25 32.69 33.61 ARCNN(${\rm{QF}} = 40$) 28.48 31.14 32.62 33.63 下載: 導(dǎo)出CSV
表 2 本文方法在LIVE1數(shù)據(jù)集上的PSNR(dB)/SSIM對(duì)比
方法 QF 10 20 30 40 JPEG 27.77/0.7905 30.07/0.8683 31.41/0.9000 32.35/0.9173 ARCNN 28.96/0.8217 31.30/0.8871 32.69/0.9161 33.63/0.9303 L4 Residual 29.08/0.8241 31.42/0.8900 32.80/0.9174 33.78/0.9322 L8 Residual – 31.51/0.8911 – – DnCNN-3 29.20/0.8262 31.59/0.8936 32.98/0.9204 33.96/0.9346 本文方法 29.49/0.8329 31.81/0.8952 33.08/0.9196 34.14/0.9367 下載: 導(dǎo)出CSV
表 3 本文方法在Classic5數(shù)據(jù)集上的PSNR(dB)/SSIM對(duì)比
方法 QF 10 20 30 40 JPEG 27.82/0.7800 30.12/0.8541 31.48/0.8844 32.43/0.9011 ARCNN 29.04/0.8108 31.16/0.8691 32.52/0.8963 33.34/0.9098 DnCNN-3 29.40/0.8201 31.63/0.8775 32.90/0.9011 33.77/0.9141 本文方法 29.68/0.8275 31.87/0.8798 33.03/0.9013 33.95/0.9166 下載: 導(dǎo)出CSV
表 4 本文方法在LIVE1數(shù)據(jù)集上的PSNR(dB)/SSIM對(duì)比
方法 QF 15 25 35 45 JPEG 29.13/0.8402 30.81/0.8869 31.93/0.9101 32.78/0.9241 DnCNN-3 30.61/0.8697 32.35/0.9094 33.53/0.9287 34.39/0.9400 本文方法 30.83/0.8733 32.50/0.9095 33.68/0.9303 34.56/0.9416 下載: 導(dǎo)出CSV
表 5 不同尺度的選擇在LIVE1數(shù)據(jù)集上的PSNR(dB)/SSIM對(duì)比
不同尺度 QF 10 15 20 25 單一尺度($3 \times 3$) 29.42/0.8309 30.78/0.8719 31.75/0.8942 32.46/0.9086 單一尺度($5 \times 5$) 29.44/0.8316 30.79/0.8719 31.76/0.8945 32.46/0.9090 本文方法 29.49/0.8329 30.83/0.8733 31.81/0.8952 32.50/0.9095 下載: 導(dǎo)出CSV
表 6 不同網(wǎng)絡(luò)層數(shù)在LIVE1數(shù)據(jù)集上的PSNR(dB)/SSIM對(duì)比
不同層數(shù) QF 10 15 20 25 Dense3 29.45/0.8318 30.79/0.8714 31.77/0.8947 32.47/0.9090 Dense4 29.47/0.8325 30.81/0.8728 31.79/0.8950 32.49/0.9092 Dense5 29.49/0.8329 30.83/0.8733 31.81/0.8952 32.50/0.9095 Dense6 29.47/0.8324 30.81/0.8735 31.79/0.8951 32.49/0.9099 下載: 導(dǎo)出CSV
表 7 使用普通塊和稠密塊在LIVE1數(shù)據(jù)集上的PSNR(dB)/SSIM對(duì)比
方法 QF 10 15 20 25 普通塊 29.39/0.8303 30.75/0.8712 31.71/0.8938 32.41/0.9081 稠密塊 29.49/0.8329 30.83/0.8733 31.81/0.8952 32.50/0.9095 下載: 導(dǎo)出CSV
-
FOI A, KATKOVNIK V, and EGIAZARIAN K. Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images[J]. IEEE Transactions on Image Processing, 2007, 16(5): 1395–1411. doi: 10.1109/TIP.2007.891788 YOO S B, CHOI K, and RA J B. Post-processing for blocking artifact reduction based on inter-block correlation[J]. IEEE Transactions on Multimedia, 2014, 16(6): 1536–1548. doi: 10.1109/TMM.2014.2327563 ZHAO Chen, ZHANG Jian, MA Siwei, et al. Reducing image compression artifacts by structural sparse representation and quantization constraint prior[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(10): 2057–2071. doi: 10.1109/TCSVT.2016.2580399 呂曉琪, 吳涼, 谷宇, 等. 基于深度卷積神經(jīng)網(wǎng)絡(luò)的低劑量CT肺部去噪[J]. 電子與信息學(xué)報(bào), 2018, 40(6): 1353–1359. doi: 10.11999/JEIT170769Lü Xiaoqi, WU Liang, GU Yu, et al. Low dose CT lung denoising model based on deep convolution neural network[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1353–1359. doi: 10.11999/JEIT170769 DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281 郭智, 宋萍, 張義, 等. 基于深度卷積神經(jīng)網(wǎng)絡(luò)的遙感圖像飛機(jī)目標(biāo)檢測(cè)方法[J]. 電子與信息學(xué)報(bào), 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117GUO Zhi, SONG Ping, ZHANG Yi, et al. Aircraft detection method based on deep convolutional neural network for remote sensing images[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117 REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031 BADRINARAYANAN V, KENDALL A, and CIPOLLA R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615 DONG Chao, DENG Yubin, LOY C C, et al. Compression artifacts reduction by a deep convolutional network[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 576-584. doi: 10.1109/ICCV.2015.73. SVOBODA P, HRADIS M, BARINA D, et al. Compression artifacts removal using convolutional neural networks[J/OL]. arXiv preprint arXiv: 1605.00366. http://arxiv.org/abs/1605.00366, 2016. ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206 KIM Y, HWANG I, and CHO N I. A new convolutional network-in-network structure and its applications in skin detection, semantic segmentation, and artifact reduction[J/OL]. arXiv preprint arXiv: 1701.06190. http://arxiv.org/abs/1701.06190, 2017. SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. LIU Pengju, ZHANG Hongzhi, ZHANG Kai, et al. Multi-level Wavelet-CNN for image restoration[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 886–895. RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. GUO Jun and CHAO Hongyang. One-to-many network for visually pleasing compression artifacts reduction[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4867–4876. GALTERI L, SEIDENARI L, BERTINI M, et al. Deep generative adversarial compression artifact removal[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4836–4845. HUANG Gao, LIU Zhuang, WEINBERGER K Q, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017, 1: 2261–2269. ZHANG Kai, ZUO Wangmeng, GU Shuhang, et al. Learning deep CNN denoiser prior for image restoration[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017, 2: 2808–2817. KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105. -