一種W波段無人機微型SAR系統(tǒng)
doi: 10.11999/JEIT180946
-
1.
中國科學(xué)院電子學(xué)研究所 北京 100190
-
2.
微波成像重點實驗室 北京 100190
A W Band Mini-SAR System for Unmanned Aerial Vehicle
-
1.
Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
-
2.
Science and Technology on Microwave Imaging Laboratory, Beijing 100190, China
-
摘要: 隨著輕小型無人機(UAV)日益發(fā)展,基于UAV平臺搭載微型SAR系統(tǒng)的探測手段會給信息獲取方式帶來革命性的影響,這也對微型載荷提出了的更高的需求。針對這一需求,該文介紹了一種W波段UAV微型SAR系統(tǒng),提出了基于鎖相技術(shù)的線性調(diào)頻源的設(shè)計方法,并對毫米波(MMW)介質(zhì)集成波導(dǎo)天線、3維集成、運動補償方法等關(guān)鍵問題進(jìn)行研究,研制W波段無人機微型SAR系統(tǒng)原理樣機,基于多旋翼無人機平臺開展飛行成像應(yīng)用試驗。研究結(jié)果表明,原理樣機在系統(tǒng)分辨率、體積、重量等方面具有處于業(yè)內(nèi)領(lǐng)先水平,飛行試驗獲得了聚焦效果良好的高信噪比(SNR)圖像。Abstract: With the development of light and small Unmanned Aerial Vehicles (UAV), the detection method of Mini SAR based on UAV platform brings a revolutionary impact on information acquisition mode. In this paper, a W-band Mini SAR system for UAV is proposed, including the system design proposal and composition, high linearity analog phase-locked frequency modulation, MilliMeter Wave (MMW) substrate integrated waveguide antenna, 3D integration and motion compensation methods to solve the key problems of Mini SAR. A W-band Mini SAR prototype is developed and the imaging test based on Multi-rotor UAV is proceeded. The results show that the resolution, volume and the weight of Mini SAR prototype is at the industry-leading level. A high SNR imaging with perfect focusing effect is obtained from flight test.
-
Key words:
- Unmanned Aerial Vehicle(UAV) /
- Mini SAR /
- Frequency modulated source /
- 3D integration
-
表 1 系統(tǒng)主要性能指標(biāo)
參數(shù)名稱 指標(biāo) 載波頻率(GHz) 95 帶寬(GHz) 2000 調(diào)制方式 線性調(diào)頻 調(diào)頻率(MHz·μs) 20(可調(diào)) 分辨率(m) 0.075 最大作用距離(m) 500 下載: 導(dǎo)出CSV
-
ESSEN H, STANKO S, SOMMER R, et al. Millimetre wave SAR for UAV operation[C]. IEEE Asia-Pacific Microwave Conference, Melbourne, Australia, 2011: 963–966. JOHANNES W, ESSEN H, STANKO S, et al. Miniaturized high resolution Synthetic Aperture Radar at 94 GHz for microlite aircraft or UAV[C]. IEEE Sensors 2011, Limerick, Ireland, 2011: 2022–2025. LORT M, AGUASA A, LOPEZ-MARTINEZ C, et al. Initial evaluation of SAR Capabilities in UAV multicopter platforms[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2018, 11(1): 1–14. YAN Xiaoyu, CHEN Jie, LIYANAGE Biman, et al. A light-weight SAR system for multi-rotor UAV platform using LFM quasi-CW waveform[J]. IEEE International Geoscience and Remote Sensing Symposium, Beijing, CHINA, 2016: 7346–7349. 董勇偉, 李焱磊, 丁滿來, 梁興東. 一種高分辨率W波段SAR系統(tǒng)[J]. 電子與信息學(xué)報, 2018, 40(5): 1266–1270. doi: 10.11999/JEIT170461DONG Yongwei, LI Yanlei, DING Manlai, et al. High resolution W-band SAR[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1266–1270. doi: 10.11999/JEIT170461 丁滿來, 梁興東, 唐躒, 等. 芯片化微型SAR系統(tǒng)方案設(shè)計與驗證[J]. 電子與信息學(xué)報, 2018, 40(11): 2645–2650. doi: 10.11999/JEIT171203,2018DING Manlai, LIANG Xingdong, TANG Li, et al. Design and verification of monolithic integrated SAR system[J]. Journal of Electronics and Information Technology, 2018, 40(11): 2645–2650. doi: 10.11999/JEIT171203,2018 王喆垚. 三維集成技術(shù)[M]. 北京: 清華大學(xué)出版社, 2014: 2–6.WANG Zheyao. Three Dimensional Integration Technology[M]. Beijing: Tsinghua University Press, 2014: 2–6. BEST R E. Phase-Locked Loops Design, Simulation, and Applications[M]. Beijing: Tsinghua University Press, 2007: 25–27. WILTSE. J C. Surface-wave propagation on a single metal wire or rod at millimeter-wave and terahertz frequencies[C]. 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, USA, 2006: 970–973. ALTAF A, ALSNUAIDI M A, and ARVAS E. A novel EBG structure to improve isolation in MIMO antenna[C]. 2017 USNC-URSI Radio Science Meeting(Joint with AP-S Symposium), San Diego, USA, 2017: 105–106. 趙正平. 微系統(tǒng)三維集成技術(shù)的新發(fā)展[J]. 微納電子技術(shù), 2017, 54(1): 1–10. doi: 10.13250/j.cnki.wndz.2017.01.001ZHANG Zhengping. New progress of the micro system three-dimension integration technology[J]. Micronanoelectronic Technology, 2017, 54(1): 1–10. doi: 10.13250/j.cnki.wndz.2017.01.001 肖慶. 微系統(tǒng)三維異質(zhì)異構(gòu)集成與應(yīng)用[C]. 2018年全國微波毫米波會議, 成都, 中國, 2018: 417–420.XIAO Qing. Integration and application of 3D heterogeneous heterogeneity in microsystems[C]. 2018 National Conference on Microwave and Millimeter Waves, Chengdu, China, 2018: 417–420. 王巖飛, 劉暢, 詹學(xué)麗, 等. 無人機載合成孔徑雷達(dá)系統(tǒng)技術(shù)與應(yīng)用[J]. 雷達(dá)學(xué)報, 2016, 5(4): 333–349. doi: 10.12000/JR16089WANG Yanfei, LIU Chang, and ZHAN Xueli, et al. Technology and applications of UAV synthetic aperture radar system[J]. Journal of Radars, 2016, 5(4): 333–349. doi: 10.12000/JR16089 ZAUGG E, EDWARDS M, LONG D, et al. Developments in compact high-performance synthetic aperture radar systems for use on small Unmanned Aircraft[C]. Aerospace Conference, Montana, USA, 2011: 1–14. VAN DER Graaf M W, OTTEN M P G, HUIZING A G, et al. AMBER: An X-band FMCW digital beam forming synthetic aperture radar for a tactical UAV[C]. IEEE International Symposium on Phased Array Systems and Technology, Waltham, USA, 2013: 165–170. EDRICH M and WEISS G. Second-generation Ka-band UAV SAR system[C]. European Radar Conference, Amsterdam, Holland, 2008, 479–482. -