空間目標(biāo)的短時(shí)三維幾何重構(gòu)方法
doi: 10.11999/JEIT180936
-
1.
西安電子科技大學(xué)雷達(dá)信號(hào)處理國家重點(diǎn)實(shí)驗(yàn)室 西安 710071
-
2.
西安電子科技大學(xué)信息感知技術(shù)協(xié)同創(chuàng)新中心 ??西安 ??710071
A Short Time 3D Geometry Reconstruction Method of Space Targets
-
1.
National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
2.
Collaborative Innovation Center of Information Sensing and Understand, Xidian University, Xi’an 710071, China
-
摘要: 通??臻g自旋目標(biāo)的3維(3D)重構(gòu)都是通過對(duì)散射點(diǎn)軌跡進(jìn)行矩陣分解的方法得到的,散射點(diǎn)軌跡是從雷達(dá)序列圖提取并關(guān)聯(lián)得到的。由于散射點(diǎn)提取與關(guān)聯(lián)誤差的存在,3D重構(gòu)會(huì)出現(xiàn)精度下降,甚至失敗的問題。另一方面,轉(zhuǎn)臺(tái)目標(biāo)的散射點(diǎn)軌跡符合圓屬性,這與幾何投影理論認(rèn)為散射點(diǎn)投影軌跡的橢圓屬性相違背。為解決以上問題,該文提出了基于短時(shí)的空間目標(biāo)3D重構(gòu)算法。首先對(duì)提取的散射點(diǎn)軌跡進(jìn)行2維圓屬性擬合,使其軌跡光滑,更接近理論曲線。然后采用多視角的方法估計(jì)雷達(dá)視角(LOS),通過乘以雷達(dá)視角構(gòu)成的系數(shù),將圓屬性軌跡曲線轉(zhuǎn)變成橢圓屬性軌跡曲線。通過對(duì)散射點(diǎn)橢圓屬性軌跡進(jìn)行矩陣分解的方法獲得目標(biāo)的3D結(jié)構(gòu)。最后通過2個(gè)實(shí)驗(yàn)驗(yàn)證了該文所提算法的有效性。
-
關(guān)鍵詞:
- 雷達(dá)序列圖 /
- 短時(shí)空間目標(biāo)3D重構(gòu) /
- 圓屬性擬合 /
- 矩陣分解
Abstract: Generally speaking, Three Dimension (3D) imaging of spinning space target is obtained by performing matrix factorization method on the scattering trajectories obtained from sequential radar images. Because of the errors of scattering center extraction and association, the 3D reconstruction accurate is reduced or even fail. In addition, the scattering center trajectory from turntable target consists with circle nature, which is inconsistent with the elliptic property of the scattering center trajectory obtained by optical geometry projection. To tackle these problems, this paper proposes a short time 3D reconstruction method of space target. Firstly, the retrieved trajectory is fitted with 2D circular nature to make the trajectory smooth and closer to the theoretical curve. Then the radar Line Of Sight (LOS) is estimated by multiple views and the circular curve is converted into elliptical curve by multiplying the coefficients calculated by the LOS. The 3D reconstruction can be obtained by performing matrix factorization method on elliptical curves. Finally, the simulations verify the effectiveness of the proposed method. -
表 1 實(shí)驗(yàn)參數(shù)
參數(shù) 數(shù)值 參數(shù) 數(shù)值 帶寬(GHz) 2 相鄰子孔徑相差(°) 0.66 雷達(dá)視角(°) 45 目標(biāo)轉(zhuǎn)速(rad/s) 0.07 雷達(dá)重復(fù)頻率(Hz) 600 子孔徑大小(°) 4 信噪比(dB) 5 目標(biāo)轉(zhuǎn)軸 Z 軸 下載: 導(dǎo)出CSV
表 2 不同雷達(dá)視角差對(duì)應(yīng)時(shí)長
情況 1 2 3 $\Delta \theta $(°) 5 3 2 耗時(shí)(s) 56.42 32.55 21.29 下載: 導(dǎo)出CSV
-
PATE-CORNELL E and SACHON M. Risks of particle hits during space walks in low earth orbit[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1): 134–146. doi: 10.1109/7.913673 SATO T. Shape estimation of space debris using single-range Doppler interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 1000–1005. doi: 10.1109/36.752218 WANG Qi, XING Mengdao, LU Guangyue, et al. SRMF-CLEAN imaging algorithm for space debris[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3524–3533. doi: 10.1109/TAP.2007.910343 NING Yu, BAI Xueru, ZHOU Feng, et al. Method for inverse synthetic aperture radar imaging of space debris using improved genetic algorithm[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 812–821. doi: 10.1049/iet-rsn.2016.0048 XU Gang, XING Mengdao, XIA Xianggen, et al. 3D geometry and motion estimations of maneuvering targets for interferometric ISAR with sparse aperture[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2005–2020. doi: 10.1109/TIP.2016.2535362 WU Wenzhen, HU Pengjiang, XU Shiyou, et al. Image registration for InISAR based on joint translational motion compensation[J]. IET Radar, Sonar & Navigation, 2017, 11(10): 1597–1603. doi: 10.1049/iet-rsn.2017.0140 MAYHAN J T, BURROWS M L, CUOMO K M, et al. High resolution 3D" snapshot”ISAR imaging and feature extraction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 630–642. doi: 10.1109/7.937474 MCFADDEN F E. Three-dimensional reconstruction from ISAR sequences[J]. SPIE, 2002, 4744: 58–67. LIU Lei, ZHOU Feng, BAI Xueru, et al. Joint cross-range scaling and 3D Geometry reconstruction of ISAR targets based on factorization method[J]. IEEE Transactions on Image Processing, 2016, 25(4): 1740–1750. doi: 10.1109/TIP.2016.2526905 WANG Feng, XU Feng, and JIN Yaqiu. Three-dimensional reconstruction from a multiview sequence of sparse ISAR imaging of a space target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 611–620. doi: 10.1109/TGRS.2017.2737988 LIU Lei, ZHOU Feng, and BAI Xueru. A modified EM algorithm for ISAR scatterer trajectory matrix completion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 3953–3962. doi: 10.1109/TGRS.2018.2817650 段佳, 張磊, 邢孟道, 等. 合成孔徑雷達(dá)目標(biāo)特征提取新方法[J]. 西安電子科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2014, 41(4): 13–19. doi: 10.3969/j.issn.1001-2400.2014.04.003DUAN Jia, ZHANG Lei, XING Mengdao, et al. Novel feature extraction method for synthetic aperture radar targets[J]. Journal of Xidian University, 2014, 41(4): 13–19. doi: 10.3969/j.issn.1001-2400.2014.04.003 DING Baiyuan, WEN Gongjian, HUANG Xiaohong, et al. Data augmentation by multilevel reconstruction using attributed scattering center for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 979–983. doi: 10.1109/LGRS.2017.2692386 OH S, RUSSELL S, and SASTRY S. Markov chain Monte Carlo data association for multi-target tracking[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 481–497. doi: 10.1109/TAC.2009.2012975 GRANSTR?M K, SVENSSON L, REUTER S, et al. Likelihood-based data association for extended object tracking using sampling methods[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(1): 30–45. doi: 10.1109/TIV.2017.2788184 -