離散動力系統(tǒng)無退化-配置N個正Lyapunov指數(shù)
doi: 10.11999/JEIT180925
-
1.
西安電子科技大學(xué)? ?西安? ?710071
-
2.
北京電子科技學(xué)院? ?北京? ?100070
Discrete Dynamic System without Degradation -configure N Positive Lyapunov Exponents
-
1.
Xidian University, Xi’an 710071, China
-
2.
Beijing Electronic Science and Technology Institute, Beijing 100070, China
-
摘要: 針對離散時間混沌動力學(xué)系統(tǒng),該文提出一種基于矩陣特征值以及特征向量配置Lyapunov指數(shù)為正的新算法。計算離散受控矩陣的特征值以及特征向量,設(shè)計一類具有正Lyapunov指數(shù)的通用控制器,理論證明系統(tǒng)軌道的有界性和Lyapunov指數(shù)的有限性。對線性反饋算子以及微擾反饋算子進行數(shù)值仿真分析,驗證了算法的正確性、通用性和有效性。性能評估表明,與Chen-Lai算法相比,該方法可以構(gòu)建較低計算復(fù)雜度的混沌系統(tǒng),并且運行時間較短,其輸出序列也具有較強的隨機性,實現(xiàn)了無退化、無兼并的離散混沌系統(tǒng)。
-
關(guān)鍵詞:
- 混沌系統(tǒng) /
- 無退化 /
- Lyapunov指數(shù) /
- 矩陣特征值 /
- 線性反饋算子 /
- 微擾反饋算子
Abstract: Considering discrete-time chaotic dynamics systems, a new algorithm is proposed which is based on matrix eigenvalues and eigenvectors to configure Lyapunov exponents to be positive. The eigenvalues and eigenvectors of the discrete controlled matrix are calculated to design a general controller with positive Lyapunov exponents. The theory proves the boundedness of the system orbit and the finiteness of the Lyapunov exponents. The numerical simulation analysis of the linear feedback operator and the perturbation feedback operator verifies the correctness, versatility and effectiveness of the algorithm. Performance evaluations show that, compared with Chen-Lai methods, the proposed method can construct chaotic system with lower computation complexity and the running time is shorter and the outputs demonstrate strong randomness. Thus, a discrete chaotic system with no degradation and no merger is realized. -
表 1 兩種算法配置Lyapunov指數(shù)效果比較
期望配置的李氏指數(shù) Chen-Lai算法 本文算法 0.1 1.4112; 1.8741 0.1261; 0.1101 0.6 1.5732; 1.9542 0.6612; 0.6213 3.0 3.1392; 3.2317 3.0201; 3.0131 下載: 導(dǎo)出CSV
表 2 2種算法運行速度的比較(s)
混沌系統(tǒng)的維數(shù) Chen-Lai算法 本文算法 3 0.0517 0.0279 4 0.0579 0.0287 5 0.1025 0.0587 6 0.1534 0.6640 下載: 導(dǎo)出CSV
-
陳關(guān)榮. 控制非線性動力系統(tǒng)的混沌現(xiàn)象[J]. 控制理論與應(yīng)用, 1997, 14(1): 1–6.CHEN Guanrong. Controlling chaos in nonlinear dynamical systems[J]. Control Theory and Applications, 1997, 14(1): 1–6. CHEN H K and LEE C I. Anti-control of chaos in rigid body motion[J]. Chaos, Solitons & Fractals, 2004, 21(4): 957–965. doi: 10.1016/j.chaos.2003.12.034 陳關(guān)榮, 汪小帆. 動力系統(tǒng)的混沌化——理論、方法與應(yīng)用[M]. 上海: 上海交通大學(xué)出版社, 2006.CHEN Guanrong and WANG Xiaofan. Chaos of Power System - Theory, Method and Application[M]. Shanghai: Shanghai Jiao Tong University Press, 2006. HUA Zhongyun, Yi Shuang, ZHOU Yicong, et al. Designing hyperchaotic cat maps with any desired number of positive Lyapunov exponents[J]. IEEE Transactions on Cybernetics, 2018, 48(2): 463–473. doi: 10.1109/TCYB.2016.2642166 WANG Chuanfu, FAN Chunlei, and DING Qun. Constructing discrete chaotic systems with positive Lyapunov exponents[J]. International Journal of Bifurcation and Chaos, 2018, 28(7): 1850084. doi: 10.1142/S0218127418500840 CHEN Shikun, YU Simin, Lü Jinhu, et al. Design and FPGA-based realization of a chaotic secure video communication system[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(9): 2359–2371. doi: 10.1109/TCSVT.2017.2703946 張良, 唐駕時. 四維超混沌系統(tǒng)Hopf分岔分析與反控制[J]. 計算力學(xué)學(xué)報, 2018, 35(2): 188–194. doi: 10.7511/jslx20170313005ZHANG Liang and TANG Jiashi. Hopf bifurcation analysis and anti-control of bifurcation of a four-dimensional hyperchaotic systems[J]. Chinese Journal of Computational Mechanics, 2018, 35(2): 188–194. doi: 10.7511/jslx20170313005 PHAM V T, VOLOS C, JAFARI S, et al. Constructing a novel no-equilibrium chaotic system[J]. International Journal of Bifurcation and Chaos, 2014, 24(5): 1450073. doi: 10.1142/S02181274145007 LIN Zhuosheng, YU Simin, Lü Jinhu, et al. Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(7): 1203–1216. doi: 10.1109/TCSVT.2014.2369711 ZHENG Hanzhong, YU Simin, and Lü Jinhu. Multi-images chaotic communication and FPGA implementation[C]. The 33rd Chinese Control Conference, Nanjing, China, 2014. doi: 10.1109/ChiCC.2014.6895876. SHEN Chaowen, YU Simin, Lü Jinhu, et al. Designing hyperchaotic systems with any desired number of positive Lyapunov exponents via a simple model[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(8): 2380–2389. doi: 10.1109/TCSI.2014.2304655 WU Yue, HUA Zhongyun, and ZHOU Yicong. N-dimensional discrete cat map generation using Laplace expansions[J]. IEEE Transactions on Cybernetics, 2016, 46(11): 2622–2633. doi: 10.1109/TCYB.2015.2483621 王賀元, 尹霞. 新超混沌系統(tǒng)的動力學(xué)行為及自適應(yīng)控制與同步[J]. 動力學(xué)與控制學(xué)報, 2017, 15(4): 335–341. doi: 10.6052/1672-6553-2017-002WANG Heyuan and YIN Xia. Dynamical behaviors of a new hyperchaotic system and its adaptive control and synchronization[J]. Journal of Dynamics and Control, 2017, 15(4): 335–341. doi: 10.6052/1672-6553-2017-002 楊昌燁, 陳艷峰, 張波, 等. 基于參數(shù)擾動的混沌控制方案在Buck-Boost變換器中的應(yīng)用研究[J]. 電源學(xué)報, 2018, 16(2): 32–37. doi: 10.13234/j.issn.2095-2805.2018.2.32YANG Changye, CHEN Yanfeng, ZHANG Bo, et al. Applications of chaotic control scheme based on parameter-perturbation in Buck-Boost converter[J]. Journal of Power Supply, 2018, 16(2): 32–37. doi: 10.13234/j.issn.2095-2805.2018.2.32 MAMAT M, VAIDYANATHAN S, SAMBAS A, et al. A novel double-convection chaotic attractor, its adaptive control and circuit simulation[C]. IOP Conference Series: Materials Science and Engineering, Tangerang, Indonesia, 2018, 332: 012033. doi: 10.1088/1757-899X/332/1/012033. -