一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于樣本質(zhì)量估計(jì)的空間正則化自適應(yīng)相關(guān)濾波視覺(jué)跟蹤

侯志強(qiáng) 王帥 廖秀峰 余旺盛 王姣堯 陳傳華

侯志強(qiáng), 王帥, 廖秀峰, 余旺盛, 王姣堯, 陳傳華. 基于樣本質(zhì)量估計(jì)的空間正則化自適應(yīng)相關(guān)濾波視覺(jué)跟蹤[J]. 電子與信息學(xué)報(bào), 2019, 41(8): 1983-1991. doi: 10.11999/JEIT180921
引用本文: 侯志強(qiáng), 王帥, 廖秀峰, 余旺盛, 王姣堯, 陳傳華. 基于樣本質(zhì)量估計(jì)的空間正則化自適應(yīng)相關(guān)濾波視覺(jué)跟蹤[J]. 電子與信息學(xué)報(bào), 2019, 41(8): 1983-1991. doi: 10.11999/JEIT180921
Zhiqiang HOU, Shuai WANG, Xiufeng LIAO, Wangsheng YU, Jiaoyao WANG, Chuanhua CHEN. Adaptive Regularized Correlation Filters for Visual Tracking Based on Sample Quality Estimation[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1983-1991. doi: 10.11999/JEIT180921
Citation: Zhiqiang HOU, Shuai WANG, Xiufeng LIAO, Wangsheng YU, Jiaoyao WANG, Chuanhua CHEN. Adaptive Regularized Correlation Filters for Visual Tracking Based on Sample Quality Estimation[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1983-1991. doi: 10.11999/JEIT180921

基于樣本質(zhì)量估計(jì)的空間正則化自適應(yīng)相關(guān)濾波視覺(jué)跟蹤

doi: 10.11999/JEIT180921
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61473309, 61703423)
詳細(xì)信息
    作者簡(jiǎn)介:

    侯志強(qiáng):男,1973年生,教授,研究方向?yàn)橛?jì)算機(jī)視覺(jué)和模式識(shí)別

    王帥:男,1995年生,碩士生,研究方向?yàn)橛?jì)算機(jī)視覺(jué)和機(jī)器學(xué)習(xí)

    廖秀峰:男,1993年生,碩士生,研究方向?yàn)橛?jì)算機(jī)視覺(jué)和機(jī)器學(xué)習(xí)

    余旺盛:男,1985年生,講師,研究方向?yàn)橛?jì)算機(jī)視覺(jué)和圖像處理

    王姣堯:女,1995年生, 碩士生,研究方向?yàn)橛?jì)算機(jī)視覺(jué)和機(jī)器學(xué)習(xí)

    陳傳華:男,1994年生,碩士生,研究方向?yàn)橛?jì)算機(jī)視覺(jué)和機(jī)器學(xué)習(xí)

    通訊作者:

    王帥 2289010261@qq.com

  • 中圖分類號(hào): TP391

Adaptive Regularized Correlation Filters for Visual Tracking Based on Sample Quality Estimation

Funds: The National Natural Science Foundation of China (61473309, 61703423)
  • 摘要: 相關(guān)濾波(CF)方法應(yīng)用于視覺(jué)跟蹤領(lǐng)域中效果顯著,但是由于邊界效應(yīng)的影響,導(dǎo)致跟蹤效果受到限制,針對(duì)這一問(wèn)題,該文提出一種基于樣本質(zhì)量估計(jì)的正則化自適應(yīng)的相關(guān)濾波視覺(jué)跟蹤算法。首先,該算法在濾波器的訓(xùn)練過(guò)程中加入空間懲罰項(xiàng),構(gòu)建目標(biāo)與背景的顏色及灰度直方圖模板并計(jì)算樣本質(zhì)量系數(shù),使得空間正則項(xiàng)根據(jù)樣本質(zhì)量系數(shù)自適應(yīng)變化,不同質(zhì)量的樣本受到不同程度的懲罰,減小了邊界效應(yīng)對(duì)跟蹤的影響;其次,通過(guò)對(duì)樣本質(zhì)量系數(shù)的判定,合理優(yōu)化跟蹤結(jié)果及模型更新,提高了跟蹤的可靠性和準(zhǔn)確性。在OTB2013和OTB2015數(shù)據(jù)平臺(tái)上的實(shí)驗(yàn)數(shù)據(jù)表明,與近幾年主流的跟蹤算法相比,該文算法的成功率均為最高,且與空間正則化相關(guān)濾波(SRDCF)算法相比分別提高了9.3%和9.9%。
  • 圖  1  質(zhì)量系數(shù)曲線圖

    圖  2  本文算法流程圖

    圖  3  8種算法的部分跟蹤結(jié)果對(duì)比

    圖  4  OTB2013和OTB2015數(shù)據(jù)集上的精度和成功率曲線

    表  1  自適應(yīng)正則化的相關(guān)濾波視覺(jué)跟蹤算法

     輸入:圖像序列${{{I}}_1},{{{I}}_2}, ·\!·\!· ,{{{I}}_n}$,目標(biāo)初始位置${{{p}}_0} = ({x_0},{y_0})$,目標(biāo)
    初始尺度${{{s}}_0} = ({w_0},{h_0})$。
     輸出:每幀圖像的跟蹤結(jié)果,即目標(biāo)位置${{{p}}_t} = ({x_t},{y_t})$,目標(biāo)尺度
    估計(jì)${{{s}}_t} = ({w_t},{h_t})$
     對(duì)于$t = 1,2, ·\!·\!· ,n$, do:
     (1) 目標(biāo)定位及尺度估計(jì)
      (a) 利用前一幀目標(biāo)位置${{{p}}_{t - 1}}$以及尺度${{{s}}_{t - 1}}$確定第$t$幀ROI區(qū) 域;
      (b) 提取多尺度樣本${{{I}}_s} = \{ {{{I}}_{{s_1}}},{{{I}}_{{s_2}}}, ·\!·\!· {{{I}}_{{s_S}}}\} $;
      (c) 根據(jù)響應(yīng)圖確定第$t$幀中目標(biāo)的中心位置${{{p}}_t}$以及尺度${{{s}}_t}$;
     (2) 樣本質(zhì)量估計(jì)及正則化自適應(yīng)
      (a) 根據(jù)目標(biāo)中心位置及尺度提取目標(biāo)及背景統(tǒng)計(jì)直方圖;
      (b) 利用式(8)計(jì)算樣本質(zhì)量系數(shù)$Q$;之后,利用樣本質(zhì)量系數(shù) 計(jì)算空間正則化項(xiàng);
     (3) 模型更新
      (a) 利用式(19)更新跟蹤濾波器模型${{{ω}}_t}$;
      (b) 利用式(17)、式(18)更新統(tǒng)計(jì)信息模型${{{h}}_t}$;
     結(jié)束
    下載: 導(dǎo)出CSV

    表  2  閾值${τ}$的選取與OTB2015實(shí)驗(yàn)結(jié)果的對(duì)比分析

    閾值${\rm{\tau }}$250027503000325035003750
    OTB2015跟蹤成功率0.8200.7790.8710.8550.8170.795
    下載: 導(dǎo)出CSV

    表  3  8組測(cè)試序列的中心誤差(像素)和成功率(%)

    算法CNN-SVMSTRCFTGPRHCFKCFSTCTDSSTC-COTSMCF
    Girl27.6(98.0)11.3(89.0)30.9(87.0)110.0(56.0)118.8(8.0)264.6(7.0)319.1(8.0)46.4(54.0)8.4(96.0)7.9(97.0)
    Soccer17.5(81.0)260(24.0)19.6(62.0)60.7(14.0)13.5(53.0)15.6(46.0)46.9(18.0)14.3(43.0)12.1(83.0)14.5(84.0)
    Bolt26.4(90.0)151.4(48.0)7.8(71.0)304.0(1.0)8.3(88.0)329.8(1.0)6.3(95.0)115.5(1.0)7.0(92.0)6.8(90.0)
    KiteSurf2.3(99.0)25.2(51.0)66.7(45.0)61.7(38.0)59.8(45.0)40.6(31.0)7.8(70.0)56.7(43.0)2.1(99.0)2.3(99.0)
    Sylvester5.5(96.0)5.0(98.0)5.5(96.0)5.7(91.0)12.9(83.0)13.3(81.0)14.8(82.0)14.8(70.0)4.5(99.0)7.5(99.0)
    Basketball3.8(99.0)21.4(48.0)14.1(11.0)9.4(90.0)3.7(100.0)8.1(90.0)3.9(98.0)111.6(14.0)5.0(97.0)4.1(98.0)
    Dog13.0(100.0)7.2(58.0)3.6(100.0)5.9(69.0)4.4(67.0)4.1(64.0)4.7(97.0)4.6(66.0)4.0(98.0)4.8(96.0)
    CarScale7.4(77.0)19.8(53.0)8.7(72.0)21.4(46.0)29.3(73.0)16.1(55.0)15.2(77.0)18.8(51.0)5.3(87.0)8.7(77.0)
    平均5.8(94.0)51.7(58.0)16.2(74.2)70.6(62.0)26.6(62.0)71.3(50.8)42.5(57.0)38.9(47.0)5.4(93.9)6.1(93.5)
    下載: 導(dǎo)出CSV

    表  4  不同屬性下算法跟蹤成功率對(duì)此結(jié)果

    IV (40)OPR (64)SV (66)OCC (50)DEF (44)MB (31)FM (41)IPR (31)OV (14)BC (33)LR (10)
    本文算法0.6590.6440.6400.6410.6240.6720.6460.6220.6000.6550.570
    CNN-SVM0.5320.5460.4920.5130.5470.5680.5300.5450.4880.5430.419
    STRCF0.6460.6280.6370.6180.6070.6660.6340.6040.5850.6390.561
    TGPR0.4490.4540.4000.4290.4120.4090.3980.4610.3730.4260.378
    HCF0.5350.5320.4870.5230.5300.5730.5550.5570.4740.5750.424
    KCF0.4690.4490.3990.4380.4360.4560.4520.4640.3930.4890.306
    STCT0.6360.5840.5960.5920.6030.6250.6160.5700.5300.6250.527
    DSST0.4760.4480.4140.4260.4120.4650.4420.4840.3740.4630.311
    C-COT0.6410.6370.6540.6390.6370.6880.6100.6350.6130.6660.583
    SMCF0.6720.6530.6320.6530.6120.6650.6320.6100.6080.6630.579
    下載: 導(dǎo)出CSV
  • SMEULDERS A W M, CHU D M, CUCCHIARA R, et al. Visual tracking: An experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442–1468. doi: 10.1109/TPAMI.2013.230
    WANG Naiyan, SHI Jianping, YEUNG D Y, et al. Understanding and diagnosing visual tracking systems[C]. Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3101–3109.
    黃立勤, 朱飄. 車載視頻下改進(jìn)的核相關(guān)濾波跟蹤算法[J]. 電子與信息學(xué)報(bào), 2018, 40(8): 1887–1894. doi: 10.11999/JEIT171109

    HUANG Liqin and ZHU Piao. Improved kernel correlation filtering tracking for vehicle video[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1887–1894. doi: 10.11999/JEIT171109
    BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550.
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. doi: 10.1109/TPAMI.2014.2345390
    FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627–1645. doi: 10.1109/TPAMI.2009.167
    DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090–1097.
    ZHANG Kaihua, ZHANG Lei, LIU Qingshan, et al. Fast visual tracking via dense spatio-temporal context learning[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 127–141.
    MA Chao, HUANG Jiabin, YANG Xiaokang, et al. Hierarchical convolutional features for visual tracking[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3074–2082.
    NAM H and HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4293–4302.
    BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]. Computer Vision – ECCV 2016 Workshops, Amsterdam, the Netherlands, 2016: 850–865.
    DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: Learning continuous convolution operators for visual tracking[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 472–488.
    MA Chao, YANG Xiaokang, ZHANG Chongyang, et al. Long-term correlation tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5388–5396.
    DANELLJAN M, HAGER G, KHAN F S, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1561–1575. doi: 10.1109/TPAMI.2016.2609928
    LI Feng, YAO Yingjie, LI Peihua, et al. Integrating boundary and center correlation filters for visual tracking with aspect ratio variation[C]. IEEE International Conference on Computer Vision Workshops, Venice, Italy, 2017: 2001–2009.
    WANG Xin, HOU Zhiqiang, YU Wangsheng, et al. Online scale adaptive visual tracking based on multilayer convolutional features[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 146–158. doi: 10.1109/TCYB.2017.2768570
    DANELLJAN M, H?GER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4310–4318.
    LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904–4913.
    畢篤彥, 庫(kù)濤, 查宇飛, 等. 基于顏色屬性直方圖的尺度目標(biāo)跟蹤算法研究[J]. 電子與信息學(xué)報(bào), 2016, 38(5): 1099–1106. doi: 10.11999/JEIT150921

    BI Duyan, KU Tao, ZHA Yufei, et al. Scale-adaptive Object tracking based on color names histogram[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1099–1106. doi: 10.11999/JEIT150921
    WU Yi, LIM J, and YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411–2418.
    WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226
    MA Chao, HUANG Jiabin, YANG Xiaokang, et al. Hierarchical convolutional features for visual tracking[C]. Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3074–3082.
    WANG Lijun, OUYANG Wanli, WANG Xiaogang, et al. STCT: sequentially training convolutional networks for visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1373–1381.
    HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 597–606.
    GAO Jin, LING Haibin, HU Weiming, et al. Transfer learning based visual tracking with Gaussian processes regression[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 188–203.
  • 加載中
圖(4) / 表(4)
計(jì)量
  • 文章訪問(wèn)數(shù):  3200
  • HTML全文瀏覽量:  1046
  • PDF下載量:  67
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-09-27
  • 修回日期:  2019-05-20
  • 網(wǎng)絡(luò)出版日期:  2019-05-27
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回