基于多目標(biāo)優(yōu)化的無(wú)線(xiàn)傳感器網(wǎng)絡(luò)移動(dòng)充電及數(shù)據(jù)收集算法
doi: 10.11999/JEIT180897
-
1.
合肥工業(yè)大學(xué)計(jì)算機(jī)與信息學(xué)院??合肥??230601
-
2.
安全關(guān)鍵工業(yè)測(cè)控技術(shù)教育部工程研究中心??合肥??230000
-
3.
工業(yè)安全與應(yīng)急技術(shù)安徽省重點(diǎn)實(shí)驗(yàn)室??合肥??230002
A Mobile Charging and Data Collecting Algorithm Based on Multi-objective Optimization
-
1.
School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601, China
-
2.
Engineering Research Center of Safety Critical Industrial Measurement and Control Technology, Ministry of Education, Hefei 230000, China
-
3.
Key Laboratory of Industry Safety and Emergency Technology, Anhui Province, Hefei 230002, China
-
摘要: 近年來(lái),通過(guò)引入移動(dòng)設(shè)備(ME)為無(wú)線(xiàn)傳感器網(wǎng)絡(luò)(WSNs)進(jìn)行無(wú)線(xiàn)充電和數(shù)據(jù)收集成為一個(gè)研究熱點(diǎn)。傳統(tǒng)方法一般先根據(jù)節(jié)點(diǎn)的充電需求優(yōu)先級(jí)確定移動(dòng)路徑,再根據(jù)該路徑依次對(duì)節(jié)點(diǎn)進(jìn)行數(shù)據(jù)收集。該文同時(shí)考慮充電需求和數(shù)據(jù)收集兩個(gè)維度,以最大化ME的總能量利用率和最小化數(shù)據(jù)收集平均時(shí)延為目標(biāo),建立多目標(biāo)一對(duì)多充電及數(shù)據(jù)收集模型。在ME攜帶的行駛能量和充電能量不足的前提下,設(shè)計(jì)路徑規(guī)劃策略和均衡化充電策略,并改進(jìn)多目標(biāo)蟻群算法對(duì)該文問(wèn)題進(jìn)行求解。實(shí)驗(yàn)結(jié)果表明,該文算法在多種場(chǎng)景下的目標(biāo)值、Pareto解的數(shù)量、Pareto解集的均勻性、分布范圍等性能指標(biāo)均優(yōu)于NSGA-II算法。
-
關(guān)鍵詞:
- 無(wú)線(xiàn)可充電傳感器網(wǎng)絡(luò) /
- 數(shù)據(jù)收集 /
- 多目標(biāo)優(yōu)化
Abstract: Recently, the mobile charging and data collecting by using Mobile Equipment (ME) in Wireless Sensor Networks (WSNs) is a hot topic. Existing studies determine usually the traveling path of ME according to the charging requirements of sensor nodes firstly, and then handle the data collecting. In this paper, charging requirement and data collecting are taken into consideration simultaneously. A one-to-many charging and data collecting model for ME is established with two optimization objectives, maximizing the total energy utilization and minimizing the average delay of data collecting. Due to the limited energy of the ME, the path planning strategy and the equalization charging strategy are designed. An improved multi-objective ant colony algorithm is proposed to solve the problem. Experiments show that the objective values, the number of Pareto solutions, the homogeneity of Pareto solutions and the distribution of Pareto solutions obtained by the proposed algorithm are all superior over NSGA-II algorithm. -
表 1 VN-MOAC算法和NSGA-II算法計(jì)算結(jié)果比較
指標(biāo) 網(wǎng)絡(luò)場(chǎng)景 $\phi $ (%) $\overline {\Delta \tau } $ (s) ${\rm{RN}}$ ${\rm{SP}}$ $M_3^*$ VN-MOAC NSGA-II VN-MOAC NSGA-II VN-MOAC NSGA-II VN-MOAC NSGA-II VN-MOAC NSGA-II 最優(yōu)值 L1 94.02 92.31 1663.82 1812.30 45 29 38.50 45.67 392.65 378.86 L2 88.94 85.78 769.24 1176.02 35 25 161.93 180.14 391.60 342.24 L3 95.85 93.36 1608.94 1813.72 49 27 85.69 105.50 373.73 294.36 最差值 L1 75.98 73.75 5184.72 5361.46 26 17 790.03 883.10 31.59 20.73 L2 69.30 67.16 3784.31 3898.69 18 13 794.47 869.26 42.25 24.29 L3 76.35 71.24 5197.55 5408.48 21 12 690.69 726.31 83.73 73.19 平均值 L1 85.01 83.47 3145.27 3359.45 38 21 389.43 510.69 192.43 167.94 L2 80.17 75.44 2189.46 2411.95 26 18 391.85 416.68 220.62 202.72 L3 85.98 82.76 3268.98 3333.71 37 20 363.16 393.92 187.60 166.90 中值 L1 84.86 82.84 3137.80 3145.03 38 22 410.53 527.60 125.62 95.47 L2 82.34 74.66 2285.31 2329.71 27 19 352.32 406.76 204.86 171.06 L3 87.81 82.48 3308.81 3365.68 38 21 347.66 384.47 182.56 172.99 下載: 導(dǎo)出CSV
-
錢(qián)志鴻, 王義君. 面向物聯(lián)網(wǎng)的無(wú)線(xiàn)傳感器網(wǎng)絡(luò)綜述[J]. 電子與信息學(xué)報(bào), 2013, 35(1): 215–227. doi: 10.3724/SP.J.1146.2012.00876QIAN Zhihong and WANG Yijun. Internet of things-oriented wireless Sensor networks review[J]. Journal of Electronics &Information Technology, 2013, 35(1): 215–227. doi: 10.3724/SP.J.1146.2012.00876 KURS A, KARALIS A, MOFFATT R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83–86. doi: 10.1126/science.1143254 XIE Liguang, SHI Yi, HOU Y T, et al. Wireless power transfer and applications to sensor networks[J]. IEEE Wireless Communications, 2013, 20(4): 140–145. doi: 10.1109/MWC.2013.6590061 王文華, 王田, 吳群, 等. 傳感網(wǎng)中時(shí)延受限的移動(dòng)式數(shù)據(jù)收集方法綜述[J]. 計(jì)算機(jī)研究與發(fā)展, 2017, 54(3): 474–492. doi: 10.7544/issn1000-1239.2017.20150953WANG Wenhua, WANG Tian, WU Qun, et al. Survey of delay-constrained data collection with mobile elements in WSNs[J]. Journal of Computer Research and Development, 2017, 54(3): 474–492. doi: 10.7544/issn1000-1239.2017.20150953 WANG Cong, LI Ji, and YANG Yuanyuan. Low-latency mobile data collection for wireless rechargeable sensor networks[C]. 2015 IEEE International Conference on Communications, London, UK, 2015: 6524–6529. ZHONG Ping, LI Yating, LIU Weirong, et al. Joint mobile data collection and wireless energy transfer in wireless rechargeable sensor networks[J]. Sensors, 2017, 17(8): 1881. doi: 10.3390/s17081881 WANG Cong, LI Ji, YE Fan, et al. A mobile data gathering framework for wireless rechargeable sensor networks with vehicle movement costs and capacity constraints[J]. IEEE Transactions on Computers, 2016, 65(8): 2411–2427. doi: 10.1109/TC.2015.2490060 GUO Songtao, WANG Cong, and YANG Yuanyuan. Mobile data gathering with wireless energy replenishment in rechargeable sensor networks[C]. 2013 IEEE INFOCOM, Turin, Italy, 2013: 1932–1940. GUO Songtao, WANG Cong, and YANG Yuanyuan. Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks[J]. IEEE Transactions on Mobile Computing, 2014, 13(12): 2836–2852. doi: 10.1109/TMC.2014.2307332 XIE Liguang, SHI Yi, HOU Y T, et al. A mobile platform for wireless charging and data collection in sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(8): 1521–1533. doi: 10.1109/JSAC.2015.2391631 ZHAO Miao, LI Ji, and YANG Yuanyuan. A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks[J]. IEEE Transactions on Mobile Computing, 2014, 13(12): 2689–2705. doi: 10.1109/TMC.2014.2307335 NIKOLETSEAS S, YANG Yuanyuan, and GEORGIADIS A. Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks[M]. Cham: Springer, 2016: 667–700. XIE Liguang, SHI Yi, HOU Y T, et al. Multi-node wireless energy charging in sensor networks[J]. IEEE/ACM Transactions on Networking, 2015, 23(2): 437–450. doi: 10.1109/TNET.2014.2303979 HE Shibo, CHEN Jiming, JIANG Fachang, et al. Energy provisioning in wireless rechargeable sensor networks[J]. IEEE Transactions on Mobile Computing, 2013, 12(10): 1931–1942. doi: 10.1109/TMC.2012.161 盧先領(lǐng), 王瑩瑩. 時(shí)延受限的移動(dòng)sink數(shù)據(jù)收集算法[J]. 通信學(xué)報(bào), 2014, 35(10): 107–116. doi: 10.3969/j.issn.1000-436x.2014.10.013LU Xianling and WANG Yingying. Data collection algorithm for mobile sink in delay-constrained network[J]. Journal on Communications, 2014, 35(10): 107–116. doi: 10.3969/j.issn.1000-436x.2014.10.013 XU Junyi, YUAN Xiaohui, WEI Zhenchun, et al. A wireless sensor network recharging strategy by balancing lifespan of sensor nodes[C]. IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6. YU Chansu, SHIN K G, and LEE B. Power-stepped protocol: Enhancing spatial utilization in a clustered mobile ad hoc network[J]. IEEE Journal on Selected Areas in Communications, 2004, 22(7): 1322–1334. doi: 10.1109/JSAC.2004.829349 DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017 -