一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于Hilbert信號(hào)空間的未知干擾自適應(yīng)識(shí)別方法

黃國策 王桂勝 任清華 董淑福 高維廷 魏帥

黃國策, 王桂勝, 任清華, 董淑福, 高維廷, 魏帥. 基于Hilbert信號(hào)空間的未知干擾自適應(yīng)識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2019, 41(8): 1916-1923. doi: 10.11999/JEIT180891
引用本文: 黃國策, 王桂勝, 任清華, 董淑福, 高維廷, 魏帥. 基于Hilbert信號(hào)空間的未知干擾自適應(yīng)識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2019, 41(8): 1916-1923. doi: 10.11999/JEIT180891
Guoce HUANG, Guisheng WANG, Qinghua REN, Shufu DONG, Weiting GAO, Shuai WEI. Adaptive Recognition Method for Unknown Interference Based on Hilbert Signal Space[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1916-1923. doi: 10.11999/JEIT180891
Citation: Guoce HUANG, Guisheng WANG, Qinghua REN, Shufu DONG, Weiting GAO, Shuai WEI. Adaptive Recognition Method for Unknown Interference Based on Hilbert Signal Space[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1916-1923. doi: 10.11999/JEIT180891

基于Hilbert信號(hào)空間的未知干擾自適應(yīng)識(shí)別方法

doi: 10.11999/JEIT180891
基金項(xiàng)目: 國家自然科學(xué)基金(61701521),中國博士后科學(xué)基金(2016M603044),陜西省自然科學(xué)基金(2018JQ6074)
詳細(xì)信息
    作者簡介:

    黃國策:男,1962年生,博士,教授,研究方向?yàn)檐娛潞娇胀ㄐ拧⒍滩ńM網(wǎng)

    王桂勝:男,1992年生,博士生,研究方向?yàn)檐娛潞娇胀ㄐ拧⑼ㄐ趴垢蓴_、認(rèn)知無線網(wǎng)絡(luò)

    任清華:男,1967年生,教授,研究方向?yàn)檐娛潞娇胀ㄐ拧⒆儞Q域通信

    董淑福:男,1971年生,教授,研究方向?yàn)檐娛潞娇胀ㄐ拧⒍滩ńM網(wǎng)

    高維廷:男,1984年生,博士,研究方向?yàn)殡姶蓬l譜管理

    魏帥:女,1993年生,碩士,研究方向?yàn)槎嗄繕?biāo)跟蹤識(shí)別

    通訊作者:

    王桂勝 wgsfuyun@163.com

  • 中圖分類號(hào): TN92

Adaptive Recognition Method for Unknown Interference Based on Hilbert Signal Space

Funds: The National Natural Science Foundation of China (61701521), The Postdoctoral Science Foundation of China (2016M603044), The Shaanxi Province Natural Science Foundation (2018JQ6074)
  • 摘要: 針對(duì)大樣本下未知干擾類型的分類識(shí)別問題,該文提出一種基于信號(hào)特征空間的未知干擾自適應(yīng)識(shí)別方法。首先,基于Hilbert信號(hào)空間理論對(duì)干擾信號(hào)進(jìn)行處理,建立干擾信號(hào)特征空間,進(jìn)而利用投影定理對(duì)未知干擾進(jìn)行最佳逼近,提出基于信號(hào)特征空間的概率神經(jīng)網(wǎng)絡(luò)(PNN)分類算法,并設(shè)計(jì)了未知干擾分類識(shí)別器的處理流程。仿真結(jié)果表明,與兩種傳統(tǒng)方法相比,該方法在已知干擾的分類精度方面分別提高了12.2%和2.8%;滿足條件的未知干擾最佳逼近效果隨功率強(qiáng)度呈線性變化,設(shè)計(jì)的分類識(shí)別器在滿足最佳逼近的各類干擾中總體識(shí)別率達(dá)到91.27%,處理干擾識(shí)別的速度明顯改善;在信噪比達(dá)到4 dB時(shí),對(duì)未知干擾識(shí)別準(zhǔn)確率達(dá)到92%以上。
  • 圖  1  基于信號(hào)特征空間的概率神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)圖

    圖  2  干擾分類處理流程圖

    圖  3  不同干擾功率下最佳逼近均方根誤差圖

    圖  4  不同信噪比下本文多分類算法識(shí)別率

    表  1  干擾信號(hào)參數(shù)

    干擾類型干擾參數(shù)數(shù)值
    單音干擾干擾頻點(diǎn)(MHz)150
    多音干擾干擾頻點(diǎn)(MHz)50, 100, ···, 250
    部分頻帶干擾覆蓋帶寬(MHz)250~400
    脈沖干擾占空比(%)10
    線性調(diào)頻干擾
    (單分量)
    初始頻率(MHz)150
    調(diào)頻率500
    梳狀譜干擾分量數(shù)目3
    帶寬(MHz)800
    下載: 導(dǎo)出CSV

    表  2  干擾分類算法識(shí)別率比較

    信號(hào)空間數(shù)據(jù)集識(shí)別率(%)
    單音干擾多音干擾部分頻帶線性調(diào)頻脈沖干擾梳狀譜總體識(shí)別率
    傳統(tǒng)SVM分類器85.098.710082.59081.286.3
    文獻(xiàn)[12]10098.710098.710098.795.7
    本文算法10010010091.010010098.5
    下載: 導(dǎo)出CSV

    表  3  多分類算法性能比較(%)

    干擾空間數(shù)據(jù)集分類識(shí)別率訓(xùn)練識(shí)別率測(cè)試識(shí)別率
    本文算法傳統(tǒng)算法本文算法傳統(tǒng)算法本文算法傳統(tǒng)算法
    單音干擾92.4147.5592.5950.8591.2746.24
    多音干擾98.7345.37
    部分頻帶81.0145.99
    線性調(diào)頻10045.37
    脈沖干擾74.3645.86
    梳狀譜98.7246.94
    未知干擾93.5946.62
    下載: 導(dǎo)出CSV
  • POISEL R A. Modern Communications Jamming Principles and Techniques[M]. Boston: Artech House, 2011: 279–288.
    HU Su, BI Guoan, GUAN Yongliang, et al. TDCS-based cognitive radio networks with multiuser interference avoidance[J]. IEEE Transactions on Communications, 2013, 61(12): 4828–4835. doi: 10.1109/TCOMM.2013.111313.130261
    ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2155–2162. doi: 10.1109/CVPR.2014.276.
    OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1717–1724. doi: 10.1109/CVPR.2014.222.
    WATT N and DU PLESSIS M C. Dropout algorithms for recurrent neural networks[C]. The Annual Conference of the South African Institute of Computer Scientists and Information Technologists, Port Elizabeth, South Africa, 2018: 72–78. doi: 10.1145/3278681.3278691.
    WANG Shangxing, LIU Hanpeng, GOMES P H, et al. Deep reinforcement learning for dynamic multichannel access in wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(2): 257–265. doi: 10.1109/TCCN.2018.2809722
    張彪, 閆曉鵬, 栗蘋, 等. 基于支持向量機(jī)的無線電引信抗掃頻式干擾研究[J]. 兵工學(xué)報(bào), 2016, 37(4): 635–640. doi: 10.3969/j.issn.1000-1093.2016.04.009

    ZHANG Biao, YAN Xiaopeng, LI Ping, et al. Research on anti-frequency sweeping jamming of radio fuze based on support vector machine[J]. Acta Armamentarii, 2016, 37(4): 635–640. doi: 10.3969/j.issn.1000-1093.2016.04.009
    王國宏, 白杰, 張翔宇, 等. 基于FRFT域特征差異的壓制干擾檢測(cè)與分類算法[J]. 北京航空航天大學(xué)學(xué)報(bào), 2018, 44(6): 1124–1132. doi: 10.13700/j.bh.1001-5965.2017.0423

    WANG Guohong, BAI Jie, ZHANG Xiangyu, et al. Detection and classification algorithm of suppression interference based on characteristic differences of FRFT domain[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1124–1132. doi: 10.13700/j.bh.1001-5965.2017.0423
    劉明騫, 李兵兵, 曹超鳳, 等. 認(rèn)知無線電中非高斯噪聲下數(shù)字調(diào)制信號(hào)識(shí)別方法[J]. 通信學(xué)報(bào), 2014, 35(1): 82–88. doi: 10.3969/j.issn.1000-436x.2014.01.010

    LIU Mingqian, LI Bingbing, CAO Chaofeng, et al. Recognition method of digital modulation signals over non-Gaussian noise in cognitive radio[J]. Journal on Communications, 2014, 35(1): 82–88. doi: 10.3969/j.issn.1000-436x.2014.01.010
    YANG Zeyi, TAO Ran, WANG Yue, et al. A novel multi-carrier order division multi-access communication system based on TDCS with fractional Fourier transform scheme[J]. Wireless Personal Communications, 2014, 79(2): 1301–1320. doi: 10.1007/s11277-014-1931-8
    KUZOVNIKOV A V. Study of the methods for developing jamming-immune communications systems with the use of wavelet-modulated signals[J]. Journal of Communications Technology and Electronics, 2014, 59(1): 61–70. doi: 10.1134/S1064226914010069
    王桂勝, 任清華, 姜志剛, 等. 基于信號(hào)特征空間的TDCS干擾分類識(shí)別[J]. 系統(tǒng)工程與電子技術(shù), 2017, 39(9): 1950–1958. doi: 10.3969/j.issn.1001-506X.2017.09.06

    WANG Guisheng, REN Qinghua, JIANG Zhigang, et al. Jamming classification and recognition in transform domain communication system based on signal feature space[J]. Systems Engineering and Electronics, 2017, 39(9): 1950–1958. doi: 10.3969/j.issn.1001-506X.2017.09.06
    TAO Chao, PAN Hongbo, LI Yansheng, et al. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438–2442. doi: 10.1109/LGRS.2015.2482520
    郭立民, 寇韻涵, 陳濤, 等. 基于棧式稀疏自編碼器的低信噪比下低截獲概率雷達(dá)信號(hào)調(diào)制類型識(shí)別[J]. 電子與信息學(xué)報(bào), 2018, 40(4): 875–881. doi: 10.11999/JEIT170588

    GUO Limin, KOU Yunhan, CHEN Tao, et al. Low probability of intercept radar signal recognition based on stacked sparse auto-encoder[J]. Journal of Electronics &Information Technology, 2018, 40(4): 875–881. doi: 10.11999/JEIT170588
    DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094–1121. doi: 10.1109/TIT.2011.2173241
    王磊, 周樂囡, 姬紅兵, 等. 一種面向信號(hào)分類的匹配追蹤新方法[J]. 電子與信息學(xué)報(bào), 2014, 36(6): 1299–1306. doi: 10.3724/SP.J.1146.2013.00942

    WANG Lei, ZHOU Lenan, JI Hongbing, et al. A new matching pursuit algorithm for signal classification[J]. Journal of Electronics &Information Technology, 2014, 36(6): 1299–1306. doi: 10.3724/SP.J.1146.2013.00942
    GONZáLEZ-CAMACHO J M, CROSSA J, PéREZ-RODRíGUEZ P, et al. Genome-enabled prediction using probabilistic neural network classifiers[J]. BMC Genomics, 2016, 17: 208. doi: 10.1186/s12864-016-2553-1
    張國亮, 楊春玲, 王暕來. 基于優(yōu)化概率神經(jīng)網(wǎng)絡(luò)和紅外多光譜融合的大氣層外空間彈道目標(biāo)識(shí)別[J]. 電子與信息學(xué)報(bào), 2014, 36(4): 896–902. doi: 10.3724/SP.J.1146.2013.00623

    ZHANG Guoliang, YANG Chunling, and WANG Jianlai. Discrimination of exo-atmospheric targets based on optimization of probabilistic neural network and IR multispectral fusion[J]. Journal of Electronics &Information Technology, 2014, 36(4): 896–902. doi: 10.3724/SP.J.1146.2013.00623
    GIRYES R and NEEDELL D. Near oracle performance and block analysis of signal space greedy methods[J]. Journal of Approximation Theory, 2015, 194: 157–174. doi: 10.1016/j.jat.2015.02.007
    GIRYES R and NEEDELL D. Greedy signal space methods for incoherence and beyond[J]. Applied and Computational Harmonic Analysis, 2015, 39(1): 1–20. doi: 10.1016/j.acha.2014.07.004
    胡廣書. 數(shù)字信號(hào)處理—理論、算法與實(shí)現(xiàn)[M]. 第3版, 北京: 清華大學(xué)出版社, 2012: 169–175.

    HU Guangshu. Digital Signal Processing—Theory, Algorithm and Implementation[M]. 3rd ed, Beijing: Tsinghua University Press, 2012: 169–175.
  • 加載中
圖(4) / 表(3)
計(jì)量
  • 文章訪問數(shù):  2088
  • HTML全文瀏覽量:  1028
  • PDF下載量:  78
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-09-18
  • 修回日期:  2019-03-26
  • 網(wǎng)絡(luò)出版日期:  2019-04-23
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回