基于Hilbert信號(hào)空間的未知干擾自適應(yīng)識(shí)別方法
doi: 10.11999/JEIT180891
-
1.
空軍工程大學(xué)信息與導(dǎo)航學(xué)院 西安 710077
-
2.
95910部隊(duì) ??酒泉 ??735000
Adaptive Recognition Method for Unknown Interference Based on Hilbert Signal Space
-
1.
College of Information and Navigation, Air Force Engineering University, Xi’an 710077, China
-
2.
The 95910 Troop, Jiuquan 735000, China
-
摘要: 針對(duì)大樣本下未知干擾類型的分類識(shí)別問題,該文提出一種基于信號(hào)特征空間的未知干擾自適應(yīng)識(shí)別方法。首先,基于Hilbert信號(hào)空間理論對(duì)干擾信號(hào)進(jìn)行處理,建立干擾信號(hào)特征空間,進(jìn)而利用投影定理對(duì)未知干擾進(jìn)行最佳逼近,提出基于信號(hào)特征空間的概率神經(jīng)網(wǎng)絡(luò)(PNN)分類算法,并設(shè)計(jì)了未知干擾分類識(shí)別器的處理流程。仿真結(jié)果表明,與兩種傳統(tǒng)方法相比,該方法在已知干擾的分類精度方面分別提高了12.2%和2.8%;滿足條件的未知干擾最佳逼近效果隨功率強(qiáng)度呈線性變化,設(shè)計(jì)的分類識(shí)別器在滿足最佳逼近的各類干擾中總體識(shí)別率達(dá)到91.27%,處理干擾識(shí)別的速度明顯改善;在信噪比達(dá)到4 dB時(shí),對(duì)未知干擾識(shí)別準(zhǔn)確率達(dá)到92%以上。
-
關(guān)鍵詞:
- 無人機(jī)通信 /
- 未知干擾 /
- 自適應(yīng)識(shí)別 /
- Hilbert信號(hào)空間 /
- 概率神經(jīng)網(wǎng)絡(luò)
Abstract: In order to solve the problem of classification and recognition of unknown interference types under large samples, an adaptive recognition method for unknown interference based on signal feature space is proposed. Firstly, the interference signal is processed and the interference signal feature space is established with the Hilbert signal space theory. Then the projection theorem is used to approximate the unknown interference. The classification algorithm based on signal feature space with Probabilistic Neural Network (PNN) is proposed, and the processing flow of unknown interference classifier is designed. The simulation results show that compared with two kinds of traditional methods, the proposed method improves the classification accuracy of the known interference by 12.2% and 2.8% respectively. The optimal approximation effect of the unknown interference varies linearly with the power intensity in the condition, and the overall recognition rate of the designed classifier reaches 91.27% in the various types of interference satisfying the optimal approximation, and the speed of processing interference recognition is improved significantly. When the signal-to-noise ratio reaches 4 dB, the accuracy of unknown interference recognition is more than 92%. -
表 1 干擾信號(hào)參數(shù)
干擾類型 干擾參數(shù) 數(shù)值 單音干擾 干擾頻點(diǎn)(MHz) 150 多音干擾 干擾頻點(diǎn)(MHz) 50, 100, ···, 250 部分頻帶干擾 覆蓋帶寬(MHz) 250~400 脈沖干擾 占空比(%) 10 線性調(diào)頻干擾
(單分量)初始頻率(MHz) 150 調(diào)頻率 500 梳狀譜干擾 分量數(shù)目 3 帶寬(MHz) 800 下載: 導(dǎo)出CSV
表 2 干擾分類算法識(shí)別率比較
信號(hào)空間數(shù)據(jù)集 識(shí)別率(%) 單音干擾 多音干擾 部分頻帶 線性調(diào)頻 脈沖干擾 梳狀譜 總體識(shí)別率 傳統(tǒng)SVM分類器 85.0 98.7 100 82.5 90 81.2 86.3 文獻(xiàn)[12] 100 98.7 100 98.7 100 98.7 95.7 本文算法 100 100 100 91.0 100 100 98.5 下載: 導(dǎo)出CSV
表 3 多分類算法性能比較(%)
干擾空間數(shù)據(jù)集 分類識(shí)別率 訓(xùn)練識(shí)別率 測(cè)試識(shí)別率 本文算法 傳統(tǒng)算法 本文算法 傳統(tǒng)算法 本文算法 傳統(tǒng)算法 單音干擾 92.41 47.55 92.59 50.85 91.27 46.24 多音干擾 98.73 45.37 部分頻帶 81.01 45.99 線性調(diào)頻 100 45.37 脈沖干擾 74.36 45.86 梳狀譜 98.72 46.94 未知干擾 93.59 46.62 下載: 導(dǎo)出CSV
-
POISEL R A. Modern Communications Jamming Principles and Techniques[M]. Boston: Artech House, 2011: 279–288. HU Su, BI Guoan, GUAN Yongliang, et al. TDCS-based cognitive radio networks with multiuser interference avoidance[J]. IEEE Transactions on Communications, 2013, 61(12): 4828–4835. doi: 10.1109/TCOMM.2013.111313.130261 ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2155–2162. doi: 10.1109/CVPR.2014.276. OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1717–1724. doi: 10.1109/CVPR.2014.222. WATT N and DU PLESSIS M C. Dropout algorithms for recurrent neural networks[C]. The Annual Conference of the South African Institute of Computer Scientists and Information Technologists, Port Elizabeth, South Africa, 2018: 72–78. doi: 10.1145/3278681.3278691. WANG Shangxing, LIU Hanpeng, GOMES P H, et al. Deep reinforcement learning for dynamic multichannel access in wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(2): 257–265. doi: 10.1109/TCCN.2018.2809722 張彪, 閆曉鵬, 栗蘋, 等. 基于支持向量機(jī)的無線電引信抗掃頻式干擾研究[J]. 兵工學(xué)報(bào), 2016, 37(4): 635–640. doi: 10.3969/j.issn.1000-1093.2016.04.009ZHANG Biao, YAN Xiaopeng, LI Ping, et al. Research on anti-frequency sweeping jamming of radio fuze based on support vector machine[J]. Acta Armamentarii, 2016, 37(4): 635–640. doi: 10.3969/j.issn.1000-1093.2016.04.009 王國宏, 白杰, 張翔宇, 等. 基于FRFT域特征差異的壓制干擾檢測(cè)與分類算法[J]. 北京航空航天大學(xué)學(xué)報(bào), 2018, 44(6): 1124–1132. doi: 10.13700/j.bh.1001-5965.2017.0423WANG Guohong, BAI Jie, ZHANG Xiangyu, et al. Detection and classification algorithm of suppression interference based on characteristic differences of FRFT domain[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1124–1132. doi: 10.13700/j.bh.1001-5965.2017.0423 劉明騫, 李兵兵, 曹超鳳, 等. 認(rèn)知無線電中非高斯噪聲下數(shù)字調(diào)制信號(hào)識(shí)別方法[J]. 通信學(xué)報(bào), 2014, 35(1): 82–88. doi: 10.3969/j.issn.1000-436x.2014.01.010LIU Mingqian, LI Bingbing, CAO Chaofeng, et al. Recognition method of digital modulation signals over non-Gaussian noise in cognitive radio[J]. Journal on Communications, 2014, 35(1): 82–88. doi: 10.3969/j.issn.1000-436x.2014.01.010 YANG Zeyi, TAO Ran, WANG Yue, et al. A novel multi-carrier order division multi-access communication system based on TDCS with fractional Fourier transform scheme[J]. Wireless Personal Communications, 2014, 79(2): 1301–1320. doi: 10.1007/s11277-014-1931-8 KUZOVNIKOV A V. Study of the methods for developing jamming-immune communications systems with the use of wavelet-modulated signals[J]. Journal of Communications Technology and Electronics, 2014, 59(1): 61–70. doi: 10.1134/S1064226914010069 王桂勝, 任清華, 姜志剛, 等. 基于信號(hào)特征空間的TDCS干擾分類識(shí)別[J]. 系統(tǒng)工程與電子技術(shù), 2017, 39(9): 1950–1958. doi: 10.3969/j.issn.1001-506X.2017.09.06WANG Guisheng, REN Qinghua, JIANG Zhigang, et al. Jamming classification and recognition in transform domain communication system based on signal feature space[J]. Systems Engineering and Electronics, 2017, 39(9): 1950–1958. doi: 10.3969/j.issn.1001-506X.2017.09.06 TAO Chao, PAN Hongbo, LI Yansheng, et al. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438–2442. doi: 10.1109/LGRS.2015.2482520 郭立民, 寇韻涵, 陳濤, 等. 基于棧式稀疏自編碼器的低信噪比下低截獲概率雷達(dá)信號(hào)調(diào)制類型識(shí)別[J]. 電子與信息學(xué)報(bào), 2018, 40(4): 875–881. doi: 10.11999/JEIT170588GUO Limin, KOU Yunhan, CHEN Tao, et al. Low probability of intercept radar signal recognition based on stacked sparse auto-encoder[J]. Journal of Electronics &Information Technology, 2018, 40(4): 875–881. doi: 10.11999/JEIT170588 DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094–1121. doi: 10.1109/TIT.2011.2173241 王磊, 周樂囡, 姬紅兵, 等. 一種面向信號(hào)分類的匹配追蹤新方法[J]. 電子與信息學(xué)報(bào), 2014, 36(6): 1299–1306. doi: 10.3724/SP.J.1146.2013.00942WANG Lei, ZHOU Lenan, JI Hongbing, et al. A new matching pursuit algorithm for signal classification[J]. Journal of Electronics &Information Technology, 2014, 36(6): 1299–1306. doi: 10.3724/SP.J.1146.2013.00942 GONZáLEZ-CAMACHO J M, CROSSA J, PéREZ-RODRíGUEZ P, et al. Genome-enabled prediction using probabilistic neural network classifiers[J]. BMC Genomics, 2016, 17: 208. doi: 10.1186/s12864-016-2553-1 張國亮, 楊春玲, 王暕來. 基于優(yōu)化概率神經(jīng)網(wǎng)絡(luò)和紅外多光譜融合的大氣層外空間彈道目標(biāo)識(shí)別[J]. 電子與信息學(xué)報(bào), 2014, 36(4): 896–902. doi: 10.3724/SP.J.1146.2013.00623ZHANG Guoliang, YANG Chunling, and WANG Jianlai. Discrimination of exo-atmospheric targets based on optimization of probabilistic neural network and IR multispectral fusion[J]. Journal of Electronics &Information Technology, 2014, 36(4): 896–902. doi: 10.3724/SP.J.1146.2013.00623 GIRYES R and NEEDELL D. Near oracle performance and block analysis of signal space greedy methods[J]. Journal of Approximation Theory, 2015, 194: 157–174. doi: 10.1016/j.jat.2015.02.007 GIRYES R and NEEDELL D. Greedy signal space methods for incoherence and beyond[J]. Applied and Computational Harmonic Analysis, 2015, 39(1): 1–20. doi: 10.1016/j.acha.2014.07.004 胡廣書. 數(shù)字信號(hào)處理—理論、算法與實(shí)現(xiàn)[M]. 第3版, 北京: 清華大學(xué)出版社, 2012: 169–175.HU Guangshu. Digital Signal Processing—Theory, Algorithm and Implementation[M]. 3rd ed, Beijing: Tsinghua University Press, 2012: 169–175. -