基于非局部低秩和加權(quán)全變分的圖像壓縮感知重構(gòu)算法
doi: 10.11999/JEIT180828
-
1.
重慶郵電大學(xué)通信與信息工程學(xué)院? ?重慶? ?400065
-
2.
重慶郵電大學(xué)信號與信息處理重慶市重點實驗室? ?重慶? ?400065
Compressed Sensing Image Restoration Based on Non-local Low Rank and Weighted Total Variation
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Chongqing Key Laboratory of Signal and Information Processing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
摘要: 為準確有效地實現(xiàn)自然圖像的壓縮感知(CS)重構(gòu),該文提出一種基于圖像非局部低秩(NLR)和加權(quán)全變分(WTV)的CS重構(gòu)算法。該算法考慮圖像的非局部自相似性(NSS)和局部光滑特性,對傳統(tǒng)的全變分(TV)模型進行改進,只對圖像的高頻分量設(shè)置權(quán)重,并用一種差分曲率的邊緣檢測算子來構(gòu)造權(quán)重系數(shù)。此外,算法以改進的TV模型與NLR模型為約束構(gòu)建優(yōu)化模型,并分別采用光滑非凸函數(shù)和軟閾值函數(shù)來求解低秩和全變分優(yōu)化問題,很好地利用了圖像的自身性質(zhì),保護了圖像的細節(jié)信息,并提高了算法的抗噪性和適應(yīng)性。仿真結(jié)果表明,與基于NLR的CS算法相比,相同采樣率下,該文所提算法的峰值信噪比最高可提高2.49 dB,且抗噪性更強,驗證了算法的有效性。
-
關(guān)鍵詞:
- 壓縮感知 /
- 圖像重構(gòu) /
- 非局部低秩 /
- 加權(quán)全變分
Abstract: In order to reconstruct natural image from Compressed Sensing(CS) measurements accurately and effectively, a CS image reconstruction algorithm based on Non-local Low Rank(NLR) and Weighted Total Variation(WTV) is proposed. The proposed algorithm considers the Non-local Self-Similarity(NSS) and local smoothness in the image and improves the traditional TV model, in which only the weights of image’s high-frequency components are set and constructed with a differential curvature edge detection operator. Besides, the optimization model of the proposed algorithm is built with constraints of the improved TV and the non-local low rank model, and a non-convex smooth function and a soft thresholding function are utilized to solve low rank and TV optimization problems respectively. By taking advantage of them, the proposed method makes full use of the property of image, and therefore conserves the details of image and is more robust and adaptable. Experimental results show that, compared with the CS reconstruction algorithm via non-local low rank, at the same sampling rate, the Peak Signal to Noise Ratio(PSNR) of the proposed method increases by 2.49 dB at most and the proposed method is more robust, which proves the effectiveness of the proposed algorithm. -
表 1 基于非局部低秩和加權(quán)全變分的圖像壓縮感知重構(gòu)算法(NLR-WTV)
輸入: 從原始圖像${{u}}$采樣得到的壓縮感知測量值${{y}}$ 初始化:${{{u}}_0} = {{{Φ}} ^{\rm{T}}}{{y}}$, ${{a}}$, ${}$, ${{c}}$, ${\lambda _1}$, ${\lambda _2}$, ${\mu _1}$, ${\mu _2}$; Outer loop for $k{\rm{ }} = 1, {\rm{ }}2, ·\!·\!·, K$ (1) 根據(jù)塊匹配法找到圖像各相似像素點的位置; (2) 根據(jù)式(6)、式(7)和式(8)計算圖像的低頻分量${{{u}}_{\rm{L}}}$和高頻分
量${{{u}}_{\rm{R}}}$;(3) if $k \le {K_{{0}}}$, ${{{w}}_i} = 1$ else 根據(jù)式(9)計算${{{w}}_i}$;end if Inner loop for $t{\rm{ }} = 1, {\rm{ }}2, ·\!·\!·, T\;$ (a) 根據(jù)式(17)計算${{{L}}_i}^{(k + 1)}$; (b) 根據(jù)式(19)計算${{{x}}^{(k + 1)}}$; (c) 分別根據(jù)式(21)和式(22)計算圖像在低頻和高頻的梯度
${{{z}}_1}^{(k + 1)}$和${{{z}}_2}^{(k + 1)}$;(d) 根據(jù)式(25)計算${{{u}}^{(k + 1)}}$; end for 根據(jù)式(14)更新${{a}}$, ${}$和${{c}}$; end for 輸出:重構(gòu)圖像${ {{ u} } \!\,\!\! { { {\widehat} }= { {{u} }^{(k + 1)} }$ 下載: 導(dǎo)出CSV
表 2 不同算法重構(gòu)圖像的PSNR(dB)和SSIM比較
采樣率 算法 性能指標 Monarch Barbara Lena Boats Parrots Cameraman 5% TVAL3 PSNR 20.06 19.79 23.08 22.38 22.87 22.89 SSIM 0.508 0.412 0.560 0.543 0.593 0.605 BM3D-CS PSNR 22.73 21.34 24.12 23.31 24.13 23.76 SSIM 0.642 0.523 0.693 0.610 0.692 0.658 TVNLR PSNR 23.02 22.65 25.41 24.79 25.89 24.39 SSIM 0.751 0.568 0.745 0.696 0.800 0.737 NLR-CS PSNR 26.38 27.94 30.64 29.81 31.71 25.38 SSIM 0.848 0.830 0.875 0.830 0.885 0.770 NLR-WTV PSNR 28.21 29.10 30.83 30.14 32.31 27.87 SSIM 0.883 0.862 0.879 0.857 0.891 0.817 下載: 導(dǎo)出CSV
表 3 算法測量值含噪的SSIM值比較
圖像 算法 15 20 25 30 35 Monarch NLR-CS 0.374 0.550 0.748 0.874 0.939 NLR-WTV 0.387 0.569 0.761 0.890 0.948 Boats NLR-CS 0.276 0.452 0.672 0.824 0.904 NLR-WTV 0.281 0.466 0.681 0.844 0.927 下載: 導(dǎo)出CSV
-
CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083 DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582 石光明, 劉丹華, 高大化, 等. 壓縮感知理論及其研究進展[J]. 電子學(xué)報, 2009, 37(5): 1070–1081. doi: 10.3321/j.issn:0372-2112.2009.05.028SHI Guangming, LIU Danhua, GAO Dahua, et al. Advances in theory and application of compressed sensing[J]. Acta Electronica Sinica, 2009, 37(5): 1070–1081. doi: 10.3321/j.issn:0372-2112.2009.05.028 ZHANG Jian, ZHAO Debin, ZHAO Chen, et al. Compressed sensing recovery via collaborative sparsity[C]. 2012 Data Compression Conference, Snowbird, USA, 2012: 287–296. HE Guiqing, XING Siyuan, DONG Dandan, et al. Panchromatic and multi-spectral image fusion method based on two-step sparse representation and wavelet transform[C]. The 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Kuala Lumpur, Malaysia, 2017: 259–262. RUBINSTEIN R, BRUCKSTEIN A M, and ELAD M. Dictionaries for sparse representation modeling[J]. Proceedings of the IEEE, 2010, 98(6): 1045–1057. doi: 10.1109/JPROC.2010.2040551 HONG Tao and ZHU Zhihui. Online learning sensing matrix and sparsifying dictionary simultaneously for compressive sensing[J]. Signal Processing, 2018, 153: 188–196. doi: 10.1016/j.sigpro.2018.05.021 EGIAZARIAN K, FOI A, and KATKOVNIK V. Compressed sensing image reconstruction via recursive spatially adaptive filtering[C]. 2007 IEEE International Conference on Image Processing, San Antonio, USA, 2007: I-549-I-552. BUADES A, COLL B, and MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490–530. doi: 10.1137/040616024 LIU Hangfan, XIONG Ruiqin, ZHANG Xinfeng, et al. Nonlocal gradient sparsity regularization for image restoration[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(9): 1909–1921. doi: 10.1109/TCSVT.2016.2556498 YU Jun and DONG Shumin. Nonlocal variational method application for image denoising[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing, Xiamen, China, 2017: 1–6. DONG Weisheng, SHI Guangming, LI Xin, et al. Compressive sensing via nonlocal low-rank regularization[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3618–3632. doi: 10.1109/TIP.2014.2329449 宋云, 李雪玉, 沈燕飛, 等. 基于非局部相似塊低秩的壓縮感知圖像重建算法[J]. 電子學(xué)報, 2017, 45(3): 695–703. doi: 10.3969/j.issn.0372-2112.2017.03.029SONG Yun, LI Xueyu, SHEN Yanfei, et al. Compressed sensing image reconstruction based on low rank of non-local similar patches[J]. Acta Electronica Sinica, 2017, 45(3): 695–703. doi: 10.3969/j.issn.0372-2112.2017.03.029 LIU Hangfan, XIONG Ruiqin, LIU Dong, et al. Low rank regularization exploiting intra and inter patch correlation for image denoising[C]. 2017 IEEE Visual Communications and Image Processing, USA, 2017: 1–4. GU Shuhang, XIE Qi, MENG Deyu, et al. Weighted nuclear norm minimization and its applications to low level vision[J]. International Journal of Computer Vision, 2017, 121(2): 183–208. doi: 10.1007/s11263-016-0930-5 RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[C]. The 11th Annual International Conference of the Center for Nonlinear Studies on Experimental mathematics: Computational Issues in Nonlinear Science, Los Alamos, USA, 1992: 259–268. LI Chengbo, YIN Wotao, and ZHANG Yin. TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms[EB/OL]. http://www.caam.rice.edu/~optimization/L1/TVAL3/, 2013. CHEN Qiang, MONTESINOS P, SUN Quansen, et al. Adaptive total variation denoising based on difference curvature[J]. Image and Vision Computing, 2010, 28(3): 298–306. doi: 10.1016/j.imavis.2009.04.012 ZHANG Jian, LIU Shaohui, XIONG Ruiqin, et al. Improved total variation based image compressive sensing recovery by nonlocal regularization[C]. 2013 IEEE International Symposium on Circuits and Systems, Beijing, China, 2013: 2836–2839. CANDèS E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted ${\ell _1}$ minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877–905. doi: 10.1007/s00041-008-9045-xWANG Ting, NAKAMOTO K, ZHANG Heye, et al. Reweighted anisotropic total variation minimization for limited-angle CT reconstruction[J]. IEEE Transactions on Nuclear Science, 2017, 64(10): 2742–2760. doi: 10.1109/TNS.2017.2750199 LI Yan. Sparse hyperspectral unmixing combined L1/2 norm and reweighted total variation regularization[C]. The Ninth International Conference on Digital Image Processing, Hong Kong, China, 2017: 1042046. BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016 ZHANG Mingli, DESROSIERS C, and ZHANG Caiming. Effective compressive sensing via reweighted total variation and weighted nuclear norm regularization[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, LA, United States, 2017: 1802–1806. -