一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于非局部低秩和加權(quán)全變分的圖像壓縮感知重構(gòu)算法

趙輝 張靜 張樂 劉瑩莉 張?zhí)祢U

趙輝, 張靜, 張樂, 劉瑩莉, 張?zhí)祢U. 基于非局部低秩和加權(quán)全變分的圖像壓縮感知重構(gòu)算法[J]. 電子與信息學(xué)報, 2019, 41(8): 2025-2032. doi: 10.11999/JEIT180828
引用本文: 趙輝, 張靜, 張樂, 劉瑩莉, 張?zhí)祢U. 基于非局部低秩和加權(quán)全變分的圖像壓縮感知重構(gòu)算法[J]. 電子與信息學(xué)報, 2019, 41(8): 2025-2032. doi: 10.11999/JEIT180828
Hui ZHAO, Jing ZHANG, Le ZHANG, Yingli LIU, Tianqi ZHANG. Compressed Sensing Image Restoration Based on Non-local Low Rank and Weighted Total Variation[J]. Journal of Electronics & Information Technology, 2019, 41(8): 2025-2032. doi: 10.11999/JEIT180828
Citation: Hui ZHAO, Jing ZHANG, Le ZHANG, Yingli LIU, Tianqi ZHANG. Compressed Sensing Image Restoration Based on Non-local Low Rank and Weighted Total Variation[J]. Journal of Electronics & Information Technology, 2019, 41(8): 2025-2032. doi: 10.11999/JEIT180828

基于非局部低秩和加權(quán)全變分的圖像壓縮感知重構(gòu)算法

doi: 10.11999/JEIT180828
基金項目: 國家自然科學(xué)基金(61671095)
詳細信息
    作者簡介:

    趙輝:女,1980年生,教授,碩士生導(dǎo)師,研究方向為信號與圖像處理

    張靜:女,1992年生,碩士生,研究方向為信號與圖像處理

    張樂:女,1993年生,碩士生,研究方向為信號與圖像處理

    劉瑩莉:女,1994年生,碩士生,研究方向為信號與圖像處理

    張?zhí)祢U:男,1971年生,博士后,教授,研究方向為通信信號的調(diào)制解調(diào)、盲處理、語音信號處理、神經(jīng)網(wǎng)絡(luò)實現(xiàn)以及FPGA, VLSI實現(xiàn)

    通訊作者:

    趙輝 zhaohui@cqupt.edu.cn

  • 中圖分類號: TP391.41

Compressed Sensing Image Restoration Based on Non-local Low Rank and Weighted Total Variation

Funds: The National Natural Science Foundation of China (61671095)
  • 摘要: 為準確有效地實現(xiàn)自然圖像的壓縮感知(CS)重構(gòu),該文提出一種基于圖像非局部低秩(NLR)和加權(quán)全變分(WTV)的CS重構(gòu)算法。該算法考慮圖像的非局部自相似性(NSS)和局部光滑特性,對傳統(tǒng)的全變分(TV)模型進行改進,只對圖像的高頻分量設(shè)置權(quán)重,并用一種差分曲率的邊緣檢測算子來構(gòu)造權(quán)重系數(shù)。此外,算法以改進的TV模型與NLR模型為約束構(gòu)建優(yōu)化模型,并分別采用光滑非凸函數(shù)和軟閾值函數(shù)來求解低秩和全變分優(yōu)化問題,很好地利用了圖像的自身性質(zhì),保護了圖像的細節(jié)信息,并提高了算法的抗噪性和適應(yīng)性。仿真結(jié)果表明,與基于NLR的CS算法相比,相同采樣率下,該文所提算法的峰值信噪比最高可提高2.49 dB,且抗噪性更強,驗證了算法的有效性。
  • 圖  1  Barbara仿真效果對比圖

    圖  2  Parrots仿真效果對比圖

    圖  3  6幅測試圖在不同采樣率下各種算法的PSNR平均值

    圖  4  算法測量值含噪的PSNR值比較

    表  1  基于非局部低秩和加權(quán)全變分的圖像壓縮感知重構(gòu)算法(NLR-WTV)

     輸入: 從原始圖像${{u}}$采樣得到的壓縮感知測量值${{y}}$
     初始化:${{{u}}_0} = {{{Φ}} ^{\rm{T}}}{{y}}$, ${{a}}$, ${}$, ${{c}}$, ${\lambda _1}$, ${\lambda _2}$, ${\mu _1}$, ${\mu _2}$;
     Outer loop for $k{\rm{ }} = 1, {\rm{ }}2, ·\!·\!·, K$
      (1) 根據(jù)塊匹配法找到圖像各相似像素點的位置;
      (2) 根據(jù)式(6)、式(7)和式(8)計算圖像的低頻分量${{{u}}_{\rm{L}}}$和高頻分
    量${{{u}}_{\rm{R}}}$;
      (3) if $k \le {K_{{0}}}$, ${{{w}}_i} = 1$ else 根據(jù)式(9)計算${{{w}}_i}$;end if
     Inner loop for $t{\rm{ }} = 1, {\rm{ }}2, ·\!·\!·, T\;$
        (a) 根據(jù)式(17)計算${{{L}}_i}^{(k + 1)}$;
        (b) 根據(jù)式(19)計算${{{x}}^{(k + 1)}}$;
        (c) 分別根據(jù)式(21)和式(22)計算圖像在低頻和高頻的梯度
    ${{{z}}_1}^{(k + 1)}$和${{{z}}_2}^{(k + 1)}$;
        (d) 根據(jù)式(25)計算${{{u}}^{(k + 1)}}$;
       end for
       根據(jù)式(14)更新${{a}}$, ${}$和${{c}}$;
     end for
     輸出:重構(gòu)圖像${ {{ u} } \!\,\!\! { { {\widehat} }= { {{u} }^{(k + 1)} }$
    下載: 導(dǎo)出CSV

    表  2  不同算法重構(gòu)圖像的PSNR(dB)和SSIM比較

    采樣率算法性能指標MonarchBarbaraLenaBoatsParrotsCameraman
    5%TVAL3PSNR20.0619.7923.0822.3822.8722.89
    SSIM0.5080.4120.5600.5430.5930.605
    BM3D-CSPSNR22.7321.3424.1223.3124.1323.76
    SSIM0.6420.5230.6930.6100.6920.658
    TVNLRPSNR23.0222.6525.4124.7925.8924.39
    SSIM0.7510.5680.7450.6960.8000.737
    NLR-CSPSNR26.3827.9430.6429.8131.7125.38
    SSIM0.8480.8300.8750.8300.8850.770
    NLR-WTVPSNR28.2129.1030.8330.1432.3127.87
    SSIM0.8830.8620.8790.8570.8910.817
    下載: 導(dǎo)出CSV

    表  3  算法測量值含噪的SSIM值比較

    圖像算法1520253035
    MonarchNLR-CS0.3740.5500.7480.8740.939
    NLR-WTV0.3870.5690.7610.8900.948
    BoatsNLR-CS0.2760.4520.6720.8240.904
    NLR-WTV0.2810.4660.6810.8440.927
    下載: 導(dǎo)出CSV
  • CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    石光明, 劉丹華, 高大化, 等. 壓縮感知理論及其研究進展[J]. 電子學(xué)報, 2009, 37(5): 1070–1081. doi: 10.3321/j.issn:0372-2112.2009.05.028

    SHI Guangming, LIU Danhua, GAO Dahua, et al. Advances in theory and application of compressed sensing[J]. Acta Electronica Sinica, 2009, 37(5): 1070–1081. doi: 10.3321/j.issn:0372-2112.2009.05.028
    ZHANG Jian, ZHAO Debin, ZHAO Chen, et al. Compressed sensing recovery via collaborative sparsity[C]. 2012 Data Compression Conference, Snowbird, USA, 2012: 287–296.
    HE Guiqing, XING Siyuan, DONG Dandan, et al. Panchromatic and multi-spectral image fusion method based on two-step sparse representation and wavelet transform[C]. The 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Kuala Lumpur, Malaysia, 2017: 259–262.
    RUBINSTEIN R, BRUCKSTEIN A M, and ELAD M. Dictionaries for sparse representation modeling[J]. Proceedings of the IEEE, 2010, 98(6): 1045–1057. doi: 10.1109/JPROC.2010.2040551
    HONG Tao and ZHU Zhihui. Online learning sensing matrix and sparsifying dictionary simultaneously for compressive sensing[J]. Signal Processing, 2018, 153: 188–196. doi: 10.1016/j.sigpro.2018.05.021
    EGIAZARIAN K, FOI A, and KATKOVNIK V. Compressed sensing image reconstruction via recursive spatially adaptive filtering[C]. 2007 IEEE International Conference on Image Processing, San Antonio, USA, 2007: I-549-I-552.
    BUADES A, COLL B, and MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490–530. doi: 10.1137/040616024
    LIU Hangfan, XIONG Ruiqin, ZHANG Xinfeng, et al. Nonlocal gradient sparsity regularization for image restoration[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(9): 1909–1921. doi: 10.1109/TCSVT.2016.2556498
    YU Jun and DONG Shumin. Nonlocal variational method application for image denoising[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing, Xiamen, China, 2017: 1–6.
    DONG Weisheng, SHI Guangming, LI Xin, et al. Compressive sensing via nonlocal low-rank regularization[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3618–3632. doi: 10.1109/TIP.2014.2329449
    宋云, 李雪玉, 沈燕飛, 等. 基于非局部相似塊低秩的壓縮感知圖像重建算法[J]. 電子學(xué)報, 2017, 45(3): 695–703. doi: 10.3969/j.issn.0372-2112.2017.03.029

    SONG Yun, LI Xueyu, SHEN Yanfei, et al. Compressed sensing image reconstruction based on low rank of non-local similar patches[J]. Acta Electronica Sinica, 2017, 45(3): 695–703. doi: 10.3969/j.issn.0372-2112.2017.03.029
    LIU Hangfan, XIONG Ruiqin, LIU Dong, et al. Low rank regularization exploiting intra and inter patch correlation for image denoising[C]. 2017 IEEE Visual Communications and Image Processing, USA, 2017: 1–4.
    GU Shuhang, XIE Qi, MENG Deyu, et al. Weighted nuclear norm minimization and its applications to low level vision[J]. International Journal of Computer Vision, 2017, 121(2): 183–208. doi: 10.1007/s11263-016-0930-5
    RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[C]. The 11th Annual International Conference of the Center for Nonlinear Studies on Experimental mathematics: Computational Issues in Nonlinear Science, Los Alamos, USA, 1992: 259–268.
    LI Chengbo, YIN Wotao, and ZHANG Yin. TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms[EB/OL]. http://www.caam.rice.edu/~optimization/L1/TVAL3/, 2013.
    CHEN Qiang, MONTESINOS P, SUN Quansen, et al. Adaptive total variation denoising based on difference curvature[J]. Image and Vision Computing, 2010, 28(3): 298–306. doi: 10.1016/j.imavis.2009.04.012
    ZHANG Jian, LIU Shaohui, XIONG Ruiqin, et al. Improved total variation based image compressive sensing recovery by nonlocal regularization[C]. 2013 IEEE International Symposium on Circuits and Systems, Beijing, China, 2013: 2836–2839.
    CANDèS E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted ${\ell _1}$ minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877–905. doi: 10.1007/s00041-008-9045-x
    WANG Ting, NAKAMOTO K, ZHANG Heye, et al. Reweighted anisotropic total variation minimization for limited-angle CT reconstruction[J]. IEEE Transactions on Nuclear Science, 2017, 64(10): 2742–2760. doi: 10.1109/TNS.2017.2750199
    LI Yan. Sparse hyperspectral unmixing combined L1/2 norm and reweighted total variation regularization[C]. The Ninth International Conference on Digital Image Processing, Hong Kong, China, 2017: 1042046.
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    ZHANG Mingli, DESROSIERS C, and ZHANG Caiming. Effective compressive sensing via reweighted total variation and weighted nuclear norm regularization[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, LA, United States, 2017: 1802–1806.
  • 加載中
圖(4) / 表(3)
計量
  • 文章訪問數(shù):  3391
  • HTML全文瀏覽量:  1089
  • PDF下載量:  127
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-08-22
  • 修回日期:  2019-01-28
  • 網(wǎng)絡(luò)出版日期:  2019-02-25
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回